1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file lapack_test.cc Tests some LAPACK functions
such as template_lapack_???() etc to
see that they are working properly and that they deliver
the expected accuracy. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits>
#include <vector>
#include "realtype.h"
#include "template_lapack_common.h"
#if 0
static void print_matrix(int n, const ergo_real* A, const char* name)
{
printf("printing matrix '%s', n = %3i\n", name, n);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
printf(" %8.3f", (double)A[j*n+i]);
printf("\n");
}
}
#endif
static ergo_real get_maxabsdiff(int n, const ergo_real* x, const ergo_real* y)
{
ergo_real maxabsdiff = 0;
for(int i = 0; i < n; i++)
{
ergo_real diff = x[i] - y[i];
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
if(absdiff > maxabsdiff)
maxabsdiff = absdiff;
}
return maxabsdiff;
}
static int test_gesv(ergo_real tolerance, bool verbose)
{
if(verbose)
printf("Testing solution of a linear system of equations using routine template_lapack_gesv()..\n");
// Generate random matrix A and random vector x
const int n = 77;
std::vector<ergo_real> A(n*n);
for(int i = 0; i < n*n; i++)
A[i] = (ergo_real)rand() / (ergo_real)RAND_MAX;
std::vector<ergo_real> x(n);
for(int i = 0; i < n; i++)
x[i] = (ergo_real)rand() / (ergo_real)RAND_MAX;
// Now get right-hand-side b as A*x = b
std::vector<ergo_real> b(n);
for(int i = 0; i < n; i++)
{
ergo_real sum = 0;
for(int j = 0; j < n; j++)
sum += A[j*n+i] * x[j];
b[i] = sum;
}
// Now use A and b to solve for x.
int NRHS = 1;
int n2 = n;
int info = -1;
std::vector<int> IPIV(n);
std::vector<ergo_real> Atmp(n*n);
std::vector<ergo_real> resultVector(n);
memcpy(&Atmp[0], &A[0], n*n*sizeof(ergo_real));
memcpy(&resultVector[0], &b[0], n*sizeof(ergo_real));
template_lapack_gesv(&n2, &NRHS, &A[0], &n2, &IPIV[0], &resultVector[0], &n2, &info);
if(info != 0)
{
printf("ERROR in template_lapack_gesv\n");
return -1;
}
// Now compare resultVector with known x.
ergo_real maxabsdiff = get_maxabsdiff(n, &resultVector[0], &x[0]);
if(verbose)
printf("maxabsdiff for template_lapack_gesv: %g\n", (double)maxabsdiff);
int failed = 0;
if(maxabsdiff > tolerance)
{
printf("template_lapack_gesv test FAILED.\n");
failed = 1;
}
else {
if(verbose)
printf("template_lapack_gesv test OK.\n");
}
return failed;
}
static int test_potf2_trtri(ergo_real tolerance, bool verbose)
{
int failed = 0;
const int n = 13;
// Create random upper triangular matrix U.
std::vector<ergo_real> U(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
ergo_real matrixElement = 0;
if(i >= j)
matrixElement = (ergo_real)rand() / (ergo_real)RAND_MAX;
if (i == j)
matrixElement = matrixElement + 2;
U[i*n+j] = matrixElement;
}
// Compute matrix A = U' * U
std::vector<ergo_real> A(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
ergo_real sum = 0;
for(int k = 0; k < n; k++)
sum += U[i*n+k] * U[j*n+k];
A[i*n+j] = sum;
}
// Compute Cholesky factorization of A using template_lapack_potf2()
std::vector<ergo_real> Atmp(n*n);
memcpy(&Atmp[0], &A[0], n*n*sizeof(ergo_real));
int info = -1;
template_lapack_potf2("U", &n, &Atmp[0], &n, &info);
if(info != 0)
{
printf("error in template_lapack_potf2\n");
return -1;
}
// Set rest to zero. This is needed because the potf2 operation leaves some
// garbage in the other part of the matrix space.
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
if(i < j)
Atmp[i*n+j] = 0;
}
// Now compare Atmp with U.
ergo_real maxabsdiff_potf2 = get_maxabsdiff(n*n, &Atmp[0], &U[0]);
if(verbose)
printf("maxabsdiff for Cholesky decomposition template_lapack_potf2(): %g\n", (double)maxabsdiff_potf2);
if(maxabsdiff_potf2 > tolerance)
{
printf("ERROR: template_lapack_potf2 not accurate enough.\n");
printf("Error is %g, tolerance is %g\n", (double)maxabsdiff_potf2, (double)tolerance);
failed++;
}
// Compute inverse of U using template_lapack_trtri().
std::vector<ergo_real> Z(n*n);
memcpy(&Z[0], &U[0], n*n*sizeof(ergo_real));
info = -1;
// use non-const strings uplo and diag needed to avoid compiler warnings.
char uplo[8];
char diag[8];
uplo[0] = 'U';
uplo[1] = '\0';
diag[0] = 'N';
diag[1] = '\0';
template_lapack_trtri(uplo, diag, &n, &Z[0], &n, &info);
if(info != 0)
{
printf("error in template_lapack_trtri\n");
return -1;
}
// Compute B = Z * U ( B should be almost an identity matrix. )
std::vector<ergo_real> B(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
ergo_real sum = 0;
for(int k = 0; k < n; k++)
sum += Z[k*n+i] * U[j*n+k];
B[j*n+i] = sum;
}
// Compute C = U * Z ( C should be almost an identity matrix. )
std::vector<ergo_real> C(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
ergo_real sum = 0;
for(int k = 0; k < n; k++)
sum += U[k*n+i] * Z[j*n+k];
C[j*n+i] = sum;
}
// Construct an identity matrix for comparison.
std::vector<ergo_real> I(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
I[i*n+j] = 0;
if(i == j)
I[i*n+j] = 1;
}
ergo_real maxabsdiff_trtri_1 = get_maxabsdiff(n*n, &I[0], &B[0]);
if(verbose)
printf("maxabsdiff 1 for inverse template_lapack_trtri(): %g\n", (double)maxabsdiff_trtri_1);
if(maxabsdiff_trtri_1 > tolerance)
{
printf("ERROR: template_lapack_trtri not accurate enough.\n");
printf("Error is %g, tolerance is %g\n", (double)maxabsdiff_trtri_1, (double)tolerance);
failed++;
}
ergo_real maxabsdiff_trtri_2 = get_maxabsdiff(n*n, &I[0], &C[0]);
if(verbose)
printf("maxabsdiff 2 for inverse template_lapack_trtri(): %g\n", (double)maxabsdiff_trtri_2);
if(maxabsdiff_trtri_2 > tolerance)
{
printf("ERROR: template_lapack_trtri not accurate enough.\n");
printf("Error is %g, tolerance is %g\n", (double)maxabsdiff_trtri_2, (double)tolerance);
failed++;
}
if(!failed && verbose)
printf("Tests of potf2 and trtri finished OK.\n");
return failed;
}
int main(int argc, char *argv[])
{
int failed = 0;
int verbose = getenv("VERBOSE") != NULL;
ergo_real machine_epsilon = std::numeric_limits<ergo_real>::epsilon();
printf("machine_epsilon = %g Run with env VERBOSE for more info.\n",
(double)machine_epsilon);
if(test_gesv(machine_epsilon*500, verbose) != 0)
failed++;
if(test_potf2_trtri(machine_epsilon*10000, verbose) != 0)
failed++;
if (!failed)
puts("LAPACK test succeeded.");
else
puts("LAPACK test FAILED.");
return failed;
}
|