1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include "matrix_typedefs.h"
#include "matrix_utilities.h"
#include "utilities.h"
/** @file mat_performance_test.cc Performs some matrix-matrix
multiplication operations and outputs timings. The point is to
show how different block sizes affects the performance of
matrix-matrix multiplication using the hierarchic matrix
library. */
static void get_random_matrix_full(int n, std::vector<ergo_real> & fullMat) {
for (int col = 0; col < n; ++col)
for (int row = 0; row < n; ++row) {
ergo_real randomNumber = ((ergo_real)rand() / (ergo_real)RAND_MAX);
fullMat[row + col * n] = randomNumber;
}
}
static void get_matrix_from_full(normalMatrix & result,
mat::SizesAndBlocks sizeBlockInfo,
const std::vector<ergo_real> & fullMat) {
result.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
result.assignFromFull(fullMat);
}
static void verify_mmul_result(int n,
const std::vector<ergo_real> & fullMat_A,
const std::vector<ergo_real> & fullMat_B,
const normalMatrix & C) {
// Choose some matrix elements to check.
const int noOfElements = 2*n;
std::vector<int> rowIdxList(noOfElements);
std::vector<int> colIdxList(noOfElements);
std::vector<ergo_real> valuesList(noOfElements);
for(int i = 0; i < noOfElements; i++) {
rowIdxList[i] = rand() % n;
colIdxList[i] = rand() % n;
}
C.get_values(rowIdxList, colIdxList, valuesList);
for(int i = 0; i < noOfElements; i++) {
int row = rowIdxList[i];
int col = colIdxList[i];
ergo_real value = valuesList[i];
ergo_real sum = 0;
for(int k = 0; k < n; k++)
sum += fullMat_A[k*n+row] * fullMat_B[col*n+k];
if(fabs(sum - value) > 1e-7)
throw std::runtime_error("ERROR: matrix-matrix multiplication gave wrong result.");
}
}
int main(int argc, char *argv[])
{
int n = 50;
int blockSize_min = 12;
int blockSize_max = 32;
int blockSize_step = 2;
if(argc > 1 && argc != 5) {
std::cout << "This program expects the following arguments:" << std::endl;
std::cout << "./mat_performance_test n blockSize_min blockSize_max blockSize_step" << std::endl;
return -1;
}
if(argc == 5) {
n = atoi(argv[1]);
blockSize_min = atoi(argv[2]);
blockSize_max = atoi(argv[3]);
blockSize_step = atoi(argv[4]);
}
std::cout << "n = " << n << std::endl;
std::cout << "blockSize_min = " << blockSize_min << std::endl;
std::cout << "blockSize_max = " << blockSize_max << std::endl;
std::cout << "blockSize_step = " << blockSize_step << std::endl;
if(n <= 1)
throw std::runtime_error("ERROR: (n <= 1)");
#ifdef _OPENMP
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) )
defThreads = 1;
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(1);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
// Set up full matrices A and B.
std::vector<ergo_real> fullMat_A(n*n);
get_random_matrix_full(n, fullMat_A);
std::vector<ergo_real> fullMat_B(n*n);
get_random_matrix_full(n, fullMat_B);
// Set up vector with blocksizes to test.
std::vector<int> blockSizes(444);
int count = 0;
blockSizes.at(count) = blockSize_min;
while(blockSizes.at(count) < blockSize_max) {
count++;
blockSizes.at(count) = blockSizes.at(count-1) + blockSize_step;
}
int extraBlockSizes[] = {64, 128, 256, 512, 1024, 2048};
int noOfExtraBlockSizes = sizeof(extraBlockSizes) / sizeof(int);
for(int i = 0; i < noOfExtraBlockSizes; i++) {
int extraBlockSize = extraBlockSizes[i];
if(blockSizes.at(count) < extraBlockSize && extraBlockSize < n)
blockSizes.at(++count) = extraBlockSize;
}
blockSizes.at(++count) = n;
int noOfBlockSizes = count;
for(int i = 0; i < noOfBlockSizes; i++) {
int blockSize = blockSizes[i];
mat::SizesAndBlocks sizeBlockInfo;
static const int sparseMatrixBlockFactor = 2;
sizeBlockInfo =
prepareMatrixSizesAndBlocks(n,
blockSize,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor);
// Create random matrices A and B using the current block size.
normalMatrix A, B;
get_matrix_from_full(A, sizeBlockInfo, fullMat_A);
get_matrix_from_full(B, sizeBlockInfo, fullMat_B);
// Compute C = A * B
normalMatrix C;
Util::TimeMeter tm;
C.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
C = A * B;
double secondsTaken = tm.get_wall_seconds() - tm.get_start_time_wall_seconds();
std::cout << "C = A * B operation using blockSize "
<< std::setw(7) << blockSize << " took "
<< std::setw(12) << std::setprecision(5) << std::fixed << secondsTaken << " wall seconds." << std::endl;
// Verify result.
verify_mmul_result(n, fullMat_A, fullMat_B, C);
}
puts("mat_performance_test finished OK.");
return 0;
}
|