1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Kohn−Sham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include "basisinfo.h"
#include "matrix_utilities.h"
#include "integrals_general.h"
#include "integrals_2el_explicit.h"
#include "integral_matrix_wrappers.h"
#include "utilities.h"
#include "densfromf_full.h"
#include "GetDensFromFock.h"
const int MAX_AOS = 30;
typedef struct {
ergo_real x[MAX_AOS][MAX_AOS][MAX_AOS][MAX_AOS];
} four_idx_AO_struct;
static void preparePermutationsHML(const BasisInfoStruct& basisInfo,
mat::SizesAndBlocks& sizeBlockInfo,
std::vector<int>& permutation,
std::vector<int>& inversePermutation,
int blockSizeHML) {
const int sparseMatrixBlockFactor = 4;
sizeBlockInfo = prepareMatrixSizesAndBlocks(basisInfo.noOfBasisFuncs,
blockSizeHML,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor);
getMatrixPermutation(basisInfo,
blockSizeHML,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
permutation,
inversePermutation);
}
static void report_timing(const Util::TimeMeter & tm, const char* s) {
double secondsTaken = Util::TimeMeter::get_wall_seconds() - tm.get_start_time_wall_seconds();
printf("'%s' took %12.5f wall seconds.\n", s, secondsTaken);
}
void get_HML_J(const mat::SizesAndBlocks & sizeBlockInfo,
const IntegralInfo & biBasic,
const BasisInfoStruct & bis,
const std::vector<int> & permutationHML,
const symmMatrix & D,
symmMatrix & J) {
J.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
JK::Params J_K_params;
if(compute_J_by_boxes_sparse(bis,
biBasic,
J_K_params,
J,
D, // use S as "density matrix" for J matrix test
permutationHML) != 0)
throw std::runtime_error("Error in compute_J_by_boxes_sparse.");
}
void get_HML_K(const mat::SizesAndBlocks & sizeBlockInfo,
const IntegralInfo & biBasic,
const BasisInfoStruct & bis,
const std::vector<int> & permutationHML,
const std::vector<int> & inversePermutationHML,
symmMatrix & D,
symmMatrix & K) {
K.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
JK::Params J_K_params;
JK::ExchWeights CAM_params;
if(compute_K_by_boxes_sparse(bis,
biBasic,
CAM_params,
J_K_params,
K,
D,
permutationHML,
inversePermutationHML) != 0)
throw std::runtime_error("Error in compute_K_by_boxes_sparse.");
}
void get_HML_G_matrix(const mat::SizesAndBlocks & sizeBlockInfo,
const IntegralInfo & biBasic,
const BasisInfoStruct & bis,
const std::vector<int> & permutationHML,
const std::vector<int> & inversePermutationHML,
symmMatrix & D,
symmMatrix & G) {
symmMatrix J, K;
get_HML_J(sizeBlockInfo, biBasic, bis, permutationHML, D, J);
get_HML_K(sizeBlockInfo, biBasic, bis, permutationHML, inversePermutationHML, D, K);
G = J;
G += K;
}
void get_HML_dens_matrix(int noOfBasisFuncs,
int noOfOccupiedOrbitals,
const mat::SizesAndBlocks & sizeBlockInfo,
const std::vector<int> & permutationHML,
const std::vector<int> & inversePermutationHML,
symmMatrix & S,
symmMatrix & F,
symmMatrix & Dnew) {
triangMatrix Z;
Z.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
Z.inch(S, 0, mat::right);
S.writeToFile();
Z.writeToFile();
// it is enough to set parameters which will be used or checked
// if parameter is not specified nad checked somewhere during the execution, we should get an exception
GetDensFromFock DensFromFock;
DensFromFock.set_general_params(noOfBasisFuncs, sizeBlockInfo);
DensFromFock.set_no_occupied_orbs(noOfOccupiedOrbitals);
DensFromFock.set_use_diagonalization();
DensFromFock.set_use_diag_on_error();
DensFromFock.unset_use_stochastic_orbitals();
DensFromFock.unset_use_purification();
DensFromFock.unset_store_all_eigenvalues_to_file();
ergo_real electronic_temperature = 0;
DensFromFock.set_diagonalization_params(electronic_temperature,
S);
DensFromFock.do_restricted_calculations(); // set factor = 2
ergo_real invCholFactor_euclnorm = 0;
DensFromFock.set_invCholFactor(Z, invCholFactor_euclnorm);
ergo_real gap_expected_lower_bound = 0;
DensFromFock.set_gap_expected_lower_bound(gap_expected_lower_bound);
// before we set use_diagonalization flag
// if purification will not be executed, these lines can be deleted
ergo_real purification_subspace_err_limit = 1e-4;
ergo_real purification_eigvalue_err_limit= 1e-4;
ergo_real puri_eig_acc_factor_for_guess = 0;
DensFromFock.set_purification_limits(purification_subspace_err_limit,
purification_eigvalue_err_limit,
puri_eig_acc_factor_for_guess);
DensFromFock.unset_use_acceleration();
mat::normType normType = mat::frobNorm;
DensFromFock.set_truncationNormPurification(normType);
DensFromFock.set_stopCriterionNormPurification(normType);
DensFromFock.unset_purification_create_m_files(); // this paramerter can be removed now
DensFromFock.unset_output_homo_and_lumo_eigenvectors();
DensFromFock.unset_use_new_stopping_criterion();
DensFromFock.unset_use_diag_on_error_guess();
/**********/
DensFromFock.unset_do_sparsity_investigation();
// DensFromFock.set_sparsity_plots_resolution_m(10);
DensFromFock.unset_do_comparison_to_simple_purification();
DensFromFock.unset_do_puri_mmul_tests();
DensFromFock.set_purification_maxmul(88);
DensFromFock.unset_purification_ignore_failure();
DensFromFock.unset_purification_use_rand_perturbation_for_alleigsint();
DensFromFock.set_gap_expected_lower_bound(0);
DensFromFock.clean_eigs_intervals();
std::map<std::string, double> puri_stats;
symmMatrix F_ort_prev_dummy;
F_ort_prev_dummy.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
Dnew.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
Dnew.writeToFile();
F.writeToFile();
F_ort_prev_dummy.writeToFile();
if(DensFromFock.get_dens_from_fock(F,
Dnew,
F_ort_prev_dummy) != 0)
throw "Error in get_dens_from_fock.";
DensFromFock.get_puri_stats(puri_stats);
S.readFromFile();
Z.readFromFile();
Dnew.readFromFile();
F.readFromFile();
}
void do_HF_HML(int noOfBasisFuncs,
int noOfOccupiedOrbitals,
const mat::SizesAndBlocks & sizeBlockInfo,
const IntegralInfo & biBasic,
const BasisInfoStruct & bis,
const std::vector<int> & permutationHML,
const std::vector<int> & inversePermutationHML,
const symmMatrix & S,
const symmMatrix & T,
const symmMatrix & V,
double nuclearRepulsionEnergy,
int noOfIterations,
symmMatrix & finalFockMatrix
) {
symmMatrix Scopy(S);
symmMatrix Hcore;
Hcore = T + V;
symmMatrix D(S);
int count = 0;
while(1) {
// Get new Fock matrix
symmMatrix G;
get_HML_G_matrix(sizeBlockInfo, biBasic, bis, permutationHML, inversePermutationHML, D, G);
double E = symmMatrix::trace_ab(D, Hcore) + 0.5 * symmMatrix::trace_ab(D, G) + nuclearRepulsionEnergy;
printf("Energy %3d: %22.11f (symmMatrix::trace_ab(D, G) = %12.6f, symmMatrix::trace_ab(D, Hcore) = %12.6f)\n",
count, E, (double)symmMatrix::trace_ab(D, G), (double)symmMatrix::trace_ab(D, Hcore));
symmMatrix F(Hcore);
F += G;
symmMatrix Dnew;
get_HML_dens_matrix(noOfBasisFuncs, noOfOccupiedOrbitals, sizeBlockInfo, permutationHML, inversePermutationHML, Scopy, F, Dnew);
// Compute energy
D = Dnew;
count++;
if(count == noOfIterations) {
finalFockMatrix = F;
break;
}
}
}
/* The get_matrices_A_and_B routine computed matrices A and B as given
in equations (3.35) and (3.36) in the following paper:
"Polarization propagator methods in atomic and molecular calculations"
Jens Oddershede, Poul Jørgensen, and Danny L. Yeager
Computer Physics Reports
Volume 2, Issue 2, November–December 1984, Pages 33-92
http://dx.doi.org/10.1016/0167-7977(84)90003-0
*/
static void get_matrices_A_and_B(int nBasisFuncs,
int noOfOccupiedOrbitals,
ergo_real* A,
ergo_real* B,
const ergo_real* eigv,
const four_idx_AO_struct* g_MO) {
int nBasf = nBasisFuncs;
int nOcc = noOfOccupiedOrbitals;
int n2 = nBasf*nBasf;
for(int m = 0; m < nBasf; m++)
for(int alpha = 0; alpha < nBasf; alpha++)
for(int n = 0; n < nBasf; n++)
for(int beta = 0; beta < nBasf; beta++) {
int idx1 = m * nBasf + alpha;
int idx2 = n * nBasf + beta;
if(m < nOcc || n < nOcc || alpha >= nOcc || beta >= nOcc) {
A[idx1*n2+idx2] = 0;
B[idx1*n2+idx2] = 0;
continue;
}
int delta_m_n = 0;
if(m == n)
delta_m_n = 1;
int delta_alpha_beta = 0;
if(alpha == beta)
delta_alpha_beta = 1;
A[idx1*n2+idx2] = (eigv[m] - eigv[alpha]) * delta_m_n * delta_alpha_beta
+ 2*g_MO->x[m][alpha][beta][n] - g_MO->x[m][n][beta][alpha];
B[idx1*n2+idx2] = g_MO->x[alpha][n][beta][m] - 2 * g_MO->x[alpha][m][beta][n];
}
}
static void get_all_generalized_eigenvalues(int n, const ergo_real* A_in, const ergo_real* B_in, ergo_real* eigvalList) {
int lwork = 8*n*n;
std::vector<ergo_real> work(lwork);
std::vector<ergo_real> A(n*n);
std::vector<ergo_real> B(n*n);
memcpy(&A[0], A_in, n*n*sizeof(ergo_real));
memcpy(&B[0], B_in, n*n*sizeof(ergo_real));
std::vector<ergo_real> alpha_r(n);
std::vector<ergo_real> alpha_i(n);
std::vector<ergo_real> beta(n);
ergo_real* vl = NULL;
ergo_real* vr = NULL;
int ldvl = 1;
int ldvr = 1;
int info = -1;
mat::ggev("N", "N", &n, &A[0], &n, &B[0], &n, &alpha_r[0],
&alpha_i[0], &beta[0], vl, &ldvl,
vr, &ldvr, &work[0], &lwork,
&info);
if(info != 0)
throw std::runtime_error("Error in mat::ggev: (info != 0)");
// Check that all eigenvalues are real
for(int i = 0; i < n; i++) {
if(alpha_i[i] != 0)
throw std::runtime_error("Error, eigenvalue from mat::ggev with nonzero imaginary part found.");
}
for(int i = 0; i < n; i++)
eigvalList[i] = alpha_r[i] / beta[i];
}
int main(int argc, char *argv[])
{
#ifdef _OPENMP
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) ) {
defThreads = 1;
}
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(2);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
Util::TimeMeter tmEverything;
std::string moleculeStr;
if(argc > 1)
moleculeStr = argv[1];
else
moleculeStr = "default";
int blockSizeHML = 16;
printf("===== Parameters (set by command-line args in the same order as below) =======\n");
printf("moleculeStr = '%s'\n", moleculeStr.c_str());
printf("===== End of parameters ======================================================\n");
IntegralInfo biBasic(true);
BasisInfoStruct bis;
Molecule m;
if(moleculeStr == "default") {
// Use default h2o molecule.
m.addAtom(8, 0, 0, 0);
m.addAtom(1, -1.809, 0, 0);
m.addAtom(1, 0.453549, 1.751221, 0);
int nAtoms = m.getNoOfAtoms();
printf("Using default molecule, nAtoms = %d\n", nAtoms);
}
else {
// We expect a filename for a molecule file.
if(m.setFromMoleculeFile(moleculeStr.c_str(),
0, /* we are guessing the net charge here */
NULL) != 0) {
std::cerr << "Error in setFromMoleculeFile for filename '" << moleculeStr << "'." << std::endl;
throw std::runtime_error("Error in m.setFromMoleculeFile().");
}
// Verify that nAtoms is -1 in this case.
int nAtoms = m.getNoOfAtoms();
printf("Molecule file '%s' read OK, nAtoms = %d\n", moleculeStr.c_str(), nAtoms);
}
Util::TimeMeter tmPartB;
m.setNetCharge(0);
int noOfElectrons = m.getNumberOfElectrons();
if(noOfElectrons <= 0 || noOfElectrons % 2 != 0) {
printf("Error: noOfElectrons = %d. Need even number of electrons.\n", noOfElectrons);
return -1;
}
int noOfOccupiedOrbitals = noOfElectrons / 2;
printf("noOfElectrons = %5d ==> noOfOccupiedOrbitals = %5d\n", noOfElectrons, noOfOccupiedOrbitals);
int noOfIterationsHF = 25;
const char* basisSetName = "STO-3G";
static const char *dirv[] = {
".", "basis", "../basis",
ERGO_DATA_PREFIX "/basis",
ERGO_DATA_PREFIX,
ERGO_SPREFIX "/basis",
ERGO_SPREFIX
};
basisset_info basissetDef;
if(read_basisset_file(basissetDef, basisSetName, 6, dirv, 0) != 0)
throw std::runtime_error("Error in read_basisset_file().");
ergo_real nuclearRepulsionEnergy = m.getNuclearRepulsionEnergy();
std::vector<Atom> atomList(m.getNoOfAtoms());
for(int i = 0; i < m.getNoOfAtoms(); i++)
atomList[i] = m.getAtom(i);
if(bis.addBasisfuncsForMolecule(m, basisSetName,
0, NULL, biBasic, 0, 0, 0) != 0)
throw std::runtime_error("bis.addBasisfuncsForMolecule failed.");
int nBasisFuncs = bis.noOfBasisFuncs;
printf("nBasisFuncs = %d\n", nBasisFuncs);
// Get HML overlap matrix
std::vector<int> permutationHML, inversePermutationHML;
mat::SizesAndBlocks sizeBlockInfo;
preparePermutationsHML(bis, sizeBlockInfo, permutationHML, inversePermutationHML, blockSizeHML);
symmMatrix S_notrunc;
S_notrunc.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
if(compute_overlap_matrix_sparse(bis, S_notrunc,
permutationHML) != 0)
throw std::runtime_error("Error in compute_overlap_matrix_sparse.");
symmMatrix Ssymm(S_notrunc);
printf("Ssymm.eucl() = %9.5f\n", (double)Ssymm.eucl(1e-6));
symmMatrix T_notrunc;
symmMatrix V_notrunc;
// Get HML T matrix
T_notrunc.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
ergo_real threshold_for_T = 1e-12;
if(compute_T_sparse(bis,
biBasic,
threshold_for_T,
T_notrunc,
permutationHML) != 0)
throw std::runtime_error("Error in compute_T_sparse.");
// Get HML V matrix
V_notrunc.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
ergo_real threshold_for_V = 1e-12;
ergo_real boxSize_for_V = 8.8;
if(compute_V_sparse(bis,
biBasic,
m,
threshold_for_V,
boxSize_for_V,
V_notrunc,
permutationHML) != 0)
throw std::runtime_error("Error in compute_V_sparse.");
symmMatrix FockMatrix;
printf("Calling do_HF_HML()\n");
do_HF_HML(nBasisFuncs,
noOfOccupiedOrbitals,
sizeBlockInfo,
biBasic,
bis,
permutationHML,
inversePermutationHML,
S_notrunc,
T_notrunc,
V_notrunc,
nuclearRepulsionEnergy,
noOfIterationsHF,
FockMatrix);
printf("After do_HF_HML()\n");
int n = nBasisFuncs;
std::vector<ergo_real> S_full(n*n);
S_notrunc.fullMatrix(S_full, inversePermutationHML, inversePermutationHML);
std::vector<ergo_real> F_full(n*n);
FockMatrix.fullMatrix(F_full, inversePermutationHML, inversePermutationHML);
// Get eigenvectors and eigenvalues of F (also known as molecular orbitals and orbital energies)
std::vector<ergo_real> MOs(n*n);
std::vector<ergo_real> eigv(n);
get_F_orbs(n, &F_full[0], &S_full[0], &MOs[0], &eigv[0]);
// Get two-electron integrals
printf("Computing two-electron integrals...\n");
four_idx_AO_struct* g_AO = new four_idx_AO_struct;
for(int p = 0; p < n; p++)
for(int q = 0; q < n; q++)
for(int r = 0; r < n; r++)
for(int s = 0; s < n; s++)
g_AO->x[p][q][r][s] = do_2e_integral(p, q, r, s, bis, biBasic);
printf("Two-electron integrals done.\n");
// Get two-electron integrals in MO basis
printf("Computing two-electron integrals in MO basis...\n");
four_idx_AO_struct* g_MO = new four_idx_AO_struct;
for(int p = 0; p < n; p++)
for(int q = 0; q < n; q++)
for(int r = 0; r < n; r++)
for(int s = 0; s < n; s++) {
ergo_real sum = 0;
for(int a = 0; a < n; a++)
for(int b = 0; b < n; b++)
for(int c = 0; c < n; c++)
for(int d = 0; d < n; d++)
sum += MOs[p*n+a] * MOs[q*n+b] * MOs[r*n+c] * MOs[s*n+d] * g_AO->x[a][b][c][d];
g_MO->x[p][q][r][s] = sum;
}
printf("Two-electron integrals in MO basis done.\n");
// Set up matrices A and B needed for response equations
int n2=n*n;
std::vector<ergo_real> A(n2*n2);
std::vector<ergo_real> B(n2*n2);
get_matrices_A_and_B(n, noOfOccupiedOrbitals, &A[0], &B[0], &eigv[0], g_MO);
// Set up matrix of double size for linear response eigenvalue equation
int n2b=2*n2;
std::vector<ergo_real> M(n2b*n2b);
// Insert A into upper left corner of M
for(int p = 0; p < n2; p++)
for(int q = 0; q < n2; q++)
M[p*n2b+q] = A[p*n2+q];
// Insert A into lower right corner of M
for(int p = 0; p < n2; p++)
for(int q = 0; q < n2; q++)
M[(p+n2)*n2b+(q+n2)] = A[p*n2+q];
// Insert B into upper right corner of M
for(int p = 0; p < n2; p++)
for(int q = 0; q < n2; q++)
M[p*n2b+(q+n2)] = B[p*n2+q];
// Insert B into lower left corner of M
for(int p = 0; p < n2; p++)
for(int q = 0; q < n2; q++)
M[(p+n2)*n2b+q] = B[p*n2+q];
// Set up diagonal matrix II with values 1 and -1 on diagonal
std::vector<ergo_real> II(n2b*n2b);
for(int i = 0; i < n2b; i++)
for(int j = 0; j < n2b; j++) {
ergo_real value = 0;
if(i == j) {
if(i < n2)
value = 1;
else
value = -1;
}
II[i*n2b+j] = value;
}
// Get generalized eigenvalues of M and II
std::vector<ergo_real> eigvalList(n2b);
get_all_generalized_eigenvalues(n2b, &M[0], &II[0], &eigvalList[0]);
std::sort(eigvalList.begin(), eigvalList.begin()+n2b);
printf("Nonzero eigenvalues of M and II:\n");
for(int i = 0; i < n2b; i++) {
if(fabs(eigvalList[i]) > 1e-6)
printf("Eigenvalue %5d: %12.8f\n", i, (double)eigvalList[i]);
}
if(moleculeStr == "default") {
// Verify that computed eigenvalues match reference values that were computed using the standard (less naive) implementation in Ergo.
ergo_real maxabsdiff = 0;
ergo_real refValues[] = {0.483554699, 0.556648356, 0.612541560, 0.702754741};
for(int i = 0; i < 4; i++) {
ergo_real absdiff = std::fabs(eigvalList[88+i] - refValues[i]);
if(absdiff > maxabsdiff)
maxabsdiff = absdiff;
}
ergo_real tolerance = 1e-7;
#ifdef PRECISION_SINGLE
tolerance = 1e-5;
#endif
printf("Comparison of eigenvalues to ref values, maxabsdiff = %9.5g, tolerance = %9.5g\n", (double)maxabsdiff, (double)tolerance);
if(maxabsdiff > tolerance)
throw std::runtime_error("Error: maxabsdiff too large.");
}
// FIXME: Solve linear response equations for a particular value of the frequency omega, to compute polarizability values.
puts("Naive response test succeeded.");
report_timing(tmEverything, "Everything");
return 0;
}
|