1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file tmat_test.cc Tests the kinetic energy matrix
construction. The purpose of the test in its current form is
mostly to verify compilation correctness. */
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include "integrals_1el_kinetic.h"
#include "memorymanag.h"
int main(int argc, char *argv[])
{
IntegralInfo biBasic(true);
BasisInfoStruct bis;
Molecule m;
static const long double T[2][2] = {
{ 0.760031854530854163621168L, 0.383253665253394198238115L },
{ 0.383253665253394198238115L, 0.760031854530854163621168L }
};
int verbose = getenv("VERBOSE") != NULL;
m.addAtom(1, 0,0,0);
m.addAtom(1, 0,0,1);
if(bis.addBasisfuncsForMolecule(m, ERGO_SPREFIX "/basis/STO-3G",
0, NULL, biBasic, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
return 1;
}
int n = bis.noOfBasisFuncs;
ergo_real *mat= ergo_new(n*n, ergo_real);
ergo_real EPS = std::numeric_limits<ergo_real>::epsilon()*10;
/* Ugly fix because the reference values are only accurate ato
double precision so we cannot compare long double to anything
more accurate than that. */
ergo_real EPS_double = std::numeric_limits<double>::epsilon()*10;
if(EPS < EPS_double)
EPS = EPS_double;
if (compute_T_matrix_full(bis, EPS, mat)) {
printf("compute_T_matrix_full failed.\n");
return 1;
}
int failed = 0;
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++)
if ( std::fabs(mat[j+i*n]-T[j][i]) > EPS) {
printf("(%d %d): reference: %27.24Lf got: %27.24Lf diff: %12g\n", j, i,
static_cast<long double>(T[j][i]),
static_cast<long double>(mat[j+i*n]),
static_cast<double>(T[j][i]-mat[j+i*n]));
failed++;
} else {
if(verbose)
printf("%d %d OK\n", i, j);
}
}
ergo_free(mat);
if (!failed) { puts("T test succeeded."); unlink("ergoscf.out"); }
return failed;
}
|