1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file vmat_test.cc Tests the potential energy matrix
construction. The purpose of the test in its current form is
mostly to verify compilation correctness. */
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include "integrals_1el_potential.h"
#include "integrals_1el_single.h"
#include "integrals_general.h"
#include "matrix_typedefs.h"
#include "integral_matrix_wrappers.h"
#include "matrix_utilities.h"
static void
preparePermutations(const BasisInfoStruct& basisInfo,
mat::SizesAndBlocks& sizeBlockInfo,
std::vector<int>& permutation,
std::vector<int>& inversePermutation)
{
static const int sparseMatrixBlockSize = 16, sparseMatrixBlockFactor = 4;
sizeBlockInfo =
prepareMatrixSizesAndBlocks(basisInfo.noOfBasisFuncs,
sparseMatrixBlockSize,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor);
getMatrixPermutation(basisInfo,
sparseMatrixBlockSize,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
permutation,
inversePermutation);
}
static int
test_S_V_comparison(const IntegralInfo & integralInfo)
{
Molecule molecule1;
Molecule molecule2;
const ergo_real R = 22222.0;
molecule1.addAtom(5.0, 0.0, 1.0, 0.0);
molecule1.addAtom(9.0, 3.0, 0.0, 0.0);
molecule2.addAtom(5.0, 0.0, 1.0, R );
molecule2.addAtom(9.0, 3.0, 0.0, R );
BasisInfoStruct basisInfo;
if(basisInfo.addBasisfuncsForMolecule(molecule1,
"6-31Gss",
0,
NULL,
integralInfo,
0,
1,
0) != 0)
{
puts("error in basisInfo.addBasisfuncsGorMolecule");
return -1;
}
// Get overlap matrix
std::vector<int> permutationHML, inversePermutationHML;
mat::SizesAndBlocks sizeBlockInfo;
preparePermutations(basisInfo, sizeBlockInfo,
permutationHML, inversePermutationHML);
symmMatrix S;
S.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
if(compute_overlap_matrix_sparse(basisInfo, S,
permutationHML) != 0)
{
puts("error in compute_overlap_matrix_sparse");
return -1;
}
// Get V matrix
ergo_real threshold = 1e-11;
ergo_real boxSize = 3.3; // Use small box size to provoke errors.
symmMatrix V;
V.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
if(compute_V_sparse(basisInfo,
integralInfo,
molecule2,
threshold,
boxSize,
V,
permutationHML) != 0)
{
puts("error in compute_V_sparse");
return -1;
}
// Now V matrix should be approximately equal to -1 * (1/R) * (sum of charges) * S
ergo_real sumOfCharges = 14.0;
symmMatrix X(V);
ergo_real factor = -1 * (1/R) * sumOfCharges;
X *= (1/factor);
ergo_real diff = symmMatrix::frob_diff(X, S);
printf("diff = %22.11f\n", (double)diff);
if(diff > 0.0003)
{
puts("error in V test: too large diff.");
return -1;
}
puts("S vs V comparison test OK.");
return 0;
}
static int
test_V_by_explicit_comparison(const IntegralInfo & integralInfo)
{
Molecule molecule;
// Put some atoms far away to make sure multipoles are used, but
// still some of them close together so that significant overlaps
// exist.
molecule.addAtom(5.0, 0.0, 1.6, 0.4);
molecule.addAtom(9.0, 3.7, 0.0, 0.3);
molecule.addAtom(4.0, 1.7, 2.0, 0.8);
molecule.addAtom(6.0, 10.0, 21.6, 88.4);
molecule.addAtom(7.0, 13.7, 20.0, 88.3);
molecule.addAtom(3.0, 11.7, 22.0, 88.8);
molecule.addAtom(6.0, 10.0, 31.6, 77.4);
molecule.addAtom(9.0, 13.7, 30.0, 77.3);
molecule.addAtom(5.0, 11.7, 32.0, 77.8);
molecule.addAtom(8.0, 44.7, 44.0, 44.8);
BasisInfoStruct basisInfo;
if(basisInfo.addBasisfuncsForMolecule(molecule,
"6-31Gss",
0,
NULL,
integralInfo,
0,
1,
0) != 0)
{
puts("error in basisInfo.addBasisfuncsGorMolecule");
return -1;
}
// Get V matrix
std::vector<int> permutationHML, inversePermutationHML;
mat::SizesAndBlocks sizeBlockInfo;
preparePermutations(basisInfo, sizeBlockInfo,
permutationHML, inversePermutationHML);
ergo_real threshold = 1e-12;
ergo_real boxSize = 3.3; // Use small box size to provoke errors.
symmMatrix V;
V.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
if(compute_V_sparse(basisInfo,
integralInfo,
molecule,
threshold,
boxSize,
V,
permutationHML) != 0)
{
puts("error in compute_V_sparse");
return -1;
}
// Convert V to full matrix format
int n = basisInfo.noOfBasisFuncs;
std::vector<ergo_real> V_full(n*n);
V.fullMatrix(V_full,
inversePermutationHML,
inversePermutationHML);
// Check each element by explicit computation.
ergo_real maxAbsDiff = 0;
ergo_real sum_for_maxAbsDiff = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
// Compute list of simpleprimitives for product of basis funcs i and j.
const int maxCount = 888;
DistributionSpecStruct list[maxCount];
int nPrims = get_product_simple_primitives(basisInfo, i, basisInfo, j, list, maxCount, 0);
if(nPrims < 0)
return -1;
ergo_real sum = 0;
for(int m = 0; m < nPrims; m++)
for(int k = 0; k < molecule.getNoOfAtoms(); k++)
sum += -1 * do_1e_repulsion_integral_using_symb_info(&list[m], molecule.getAtom(k).charge,
molecule.getAtom(k).coords,
integralInfo);
ergo_real absDiff = fabs(V_full[i*n+j] - sum);
if(absDiff > maxAbsDiff) {
maxAbsDiff = absDiff;
sum_for_maxAbsDiff = sum;
}
}
printf("maxAbsDiff = %22.15f (sum_for_maxAbsDiff = %22.15f)\n", (double)maxAbsDiff, (double)sum_for_maxAbsDiff);
ergo_real tolerance1 = 2e-9;
#ifdef PRECISION_SINGLE
tolerance1 = 1e-2;
#endif
if(maxAbsDiff > tolerance1)
{
puts("error in test_V_by_explicit_comparison: maxAbsDiff too large.");
return -1;
}
// Also test the compute_h_core_matrix_full routine.
std::vector<ergo_real> V_full_other(n*n);
if(compute_V_matrix_full(basisInfo, integralInfo, molecule.getNoOfAtoms(),
molecule.getAtomListPtr(), threshold, &V_full_other[0]) != 0)
{
puts("error in compute_V_matrix_full");
return -1;
}
ergo_real maxAbsDiff2 = 0;
ergo_real value_for_maxAbsDiff2 = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
ergo_real absDiff = fabs(V_full[i*n+j] - V_full_other[i*n+j]);
if(absDiff > maxAbsDiff2) {
maxAbsDiff2 = absDiff;
value_for_maxAbsDiff2 = V_full[i*n+j];
}
}
printf("maxAbsDiff2 = %22.15f (value_for_maxAbsDiff2 = %22.15f)\n", (double)maxAbsDiff2, (double)value_for_maxAbsDiff2);
ergo_real tolerance2 = 2e-9;
#ifdef PRECISION_SINGLE
tolerance2 = 1e-2;
#endif
if(maxAbsDiff2 > tolerance2)
{
puts("error in test_V_by_explicit_comparison: maxAbsDiff2 too large.");
return -1;
}
puts("test_V_by_explicit_comparison OK.");
return 0;
}
static int
test_V_by_explicit_comparison_tight(const IntegralInfo & integralInfo)
{
Molecule molecule;
// Put atoms close together so that basis funcs overlap with most
// other basis funcs.
molecule.addAtom(1.0, 0.0, 1.6, 0.4);
molecule.addAtom(1.0, 3.7, 0.0, 0.3);
molecule.addAtom(1.0, 1.7, 2.0, 0.8);
molecule.addAtom(1.0, 0.1, 1.3, 0.4);
molecule.addAtom(1.0, 3.8, 0.3, 0.3);
molecule.addAtom(1.0, 1.8, 2.3, 0.8);
molecule.addAtom(1.0, 0.3, 1.7, 0.4);
molecule.addAtom(1.0, 3.5, 0.7, 0.3);
molecule.addAtom(1.0, 1.2, 2.7, 0.8);
molecule.addAtom(1.0, 0.3, 1.1, 0.4);
molecule.addAtom(1.0, 3.6, 0.2, 0.3);
molecule.addAtom(1.0, 1.9, 2.3, 0.8);
molecule.addAtom(1.0, 0.3, 1.1, 1.1);
molecule.addAtom(1.0, 3.6, 0.2, 1.2);
molecule.addAtom(1.0, 1.9, 2.3, 1.4);
BasisInfoStruct basisInfo;
if(basisInfo.addBasisfuncsForMolecule(molecule,
"STO-3G",
0,
NULL,
integralInfo,
0,
1,
0) != 0)
{
puts("error in basisInfo.addBasisfuncsGorMolecule");
return -1;
}
// Get V matrix
std::vector<int> permutationHML, inversePermutationHML;
mat::SizesAndBlocks sizeBlockInfo;
preparePermutations(basisInfo, sizeBlockInfo,
permutationHML, inversePermutationHML);
ergo_real threshold = 1e-12;
ergo_real boxSize = 3.3; // Use small box size to provoke errors.
symmMatrix V;
V.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
if(compute_V_sparse(basisInfo,
integralInfo,
molecule,
threshold,
boxSize,
V,
permutationHML) != 0)
{
puts("error in compute_V_sparse");
return -1;
}
// Convert V to full matrix format
int n = basisInfo.noOfBasisFuncs;
std::vector<ergo_real> V_full(n*n);
V.fullMatrix(V_full, inversePermutationHML, inversePermutationHML);
// Check each element by explicit computation.
ergo_real maxAbsDiff = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
// Compute list of simpleprimitives for product of basis funcs i and j.
const int maxCount = 888;
DistributionSpecStruct list[maxCount];
int nPrims = get_product_simple_primitives(basisInfo, i, basisInfo, j, list, maxCount, 0);
if(nPrims < 0)
return -1;
ergo_real sum = 0;
for(int m = 0; m < nPrims; m++)
for(int k = 0; k < molecule.getNoOfAtoms(); k++)
sum += -1 * do_1e_repulsion_integral_using_symb_info(&list[m], molecule.getAtom(k).charge,
molecule.getAtom(k).coords,
integralInfo);
ergo_real absDiff = fabs(V_full[i*n+j] - sum);
if(absDiff > maxAbsDiff)
maxAbsDiff = absDiff;
}
ergo_real tolerance = 1e-11;
#ifdef PRECISION_SINGLE
tolerance = 1e-5;
#endif
if(maxAbsDiff > tolerance)
{
printf("error in V matrix test: maxAbsDiff = %22.15f\n", (double)maxAbsDiff);
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
IntegralInfo integralInfo(true);
int errorCount = 0;
if(test_S_V_comparison(integralInfo) != 0)
{
puts("error in test_S_V_comparison.");
errorCount++;
}
if(test_V_by_explicit_comparison(integralInfo) != 0)
{
puts("error in test_V_by_explicit_comparison.");
errorCount++;
}
int N = 100;
if(argc == 2)
N = atoi(argv[1]);
for(int i = 0; i < N; i++)
{
if(test_V_by_explicit_comparison_tight(integralInfo) != 0)
errorCount++;
}
printf("test_V_by_explicit_comparison_tight test repeated, %i times, errorCount = %i\n", N, errorCount);
if(errorCount != 0)
{
puts("ERROR in V matrix tests.");
return -1;
}
puts("V matrix tests OK.");
return 0;
}
|