1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file xcmat_sparse_test.cc Tests the sparse XC matrix construction.
*/
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include <vector>
#include "integrals_1el_potential.h"
#include "integrals_2el.h"
#include "memorymanag.h"
#include "dft_common.h"
#include "grid_reader.h"
#include "xc_matrix_sparse.h"
#include "matrix_utilities.h"
static const bool PRINT_TIME = false;
static void
calculation_shared(const IntegralInfo& ii, const Molecule& mol,
const char *funcName, int blSize, int blFactor,
symmMatrix& xcMat, ergo_real *energy,
std::vector<int> & permutationHML,
bool useHiCu)
{
time_t tm; time(&tm);
BasisInfoStruct bis;
if(bis.addBasisfuncsForMolecule(mol, ERGO_SPREFIX "/basis/4-31G",
0, NULL, ii, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
throw "addBasisfuncs failed";
}
if(dft_setfunc(funcName) == 0)
{
printf("error in dft_setfunc\n");
throw "dft functional setup failed";
}
static Dft::GridParams gridParams(1e-7, 6, 35);
if(useHiCu)
gridParams.gridType = Dft::GridParams::TYPE_HICU;
int nElectrons = mol.getNumberOfElectrons();
mat::SizesAndBlocks matrix_size_block_info =
prepareMatrixSizesAndBlocks(bis.noOfBasisFuncs, blSize,
blFactor, blFactor, blFactor);
getMatrixPermutation(bis, blSize,
blFactor, blFactor, blFactor,
permutationHML);
symmMatrix dmat;
dmat.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
xcMat.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
{
std::vector<int> idx(bis.noOfBasisFuncs);
std::vector<ergo_real> values(bis.noOfBasisFuncs);
for(int i=0; i<bis.noOfBasisFuncs; i++) {
idx[i] = i;
values[i] = 1.0;
}
dmat.add_values(idx, idx, values, permutationHML, permutationHML);
}
Dft::getXC_mt(bis, ii, mol, gridParams, nElectrons, dmat,
xcMat, energy, permutationHML);
if(PRINT_TIME)
printf("Stop %lu s wall time\n", ((unsigned long)time(NULL))-tm);
}
static bool
small_calculation_core(const IntegralInfo& ii,
const char *functionalName,
const long double (*xcRef)[2], long double xcERef,
bool useHiCu)
{
bool failed = false;
Molecule m;
/* The code later will change the order of atoms, this is why the
reference table may seem strange at the first sight. */
m.addAtom(2, 0,0,0);
m.addAtom(1, 0,0,1.5);
static const int BL_SIZE = 4;
static const int BL_FACTOR = 2;
symmMatrix xcMat;
ergo_real dftEnergy;
std::vector<int> permutationHML;
calculation_shared(ii, m, functionalName, BL_SIZE, BL_FACTOR,
xcMat, &dftEnergy, permutationHML, useHiCu);
/* We give some room to accumulation error. For long double calculation,
* accumulation factor for xc matrix element equal to 200 would suffice.
* Energy comparison need to be looser, this why we take 2100. */
static const ergo_real EPS_accurate =
std::numeric_limits<ergo_real>::epsilon()*
(sizeof(ergo_real) == sizeof(ergo_long_real) ? 2100 : 100);
static const ergo_real EPS_sloppy = 2e-5;
static ergo_real EPS = EPS_accurate;
/* Allow larger error for HiCu grid. */
if(useHiCu)
EPS = EPS_sloppy;
std::vector<int> rowind(1);
std::vector<int> colind(1);
std::vector<ergo_real> values(1);
for(int row=0; row<2; row++) {
for(int col=0; col<2; col++) {
rowind[0] = row;
colind[0] = col;
xcMat.get_values(rowind, colind, values, permutationHML, permutationHML);
if (std::fabs(values[0] - xcRef[row][col])>EPS) {
printf(" (%d,%d): ref: %28.25Lf got: %28.25Lf diff: %12g\n",
row, col,
static_cast<long double>(xcRef[row][col]),
static_cast<long double>(values[0]),
double(values[0] - xcRef[row][col]));
failed = true;
}
}
}
std::string gridStr = "std ";
if(useHiCu)
gridStr = "HiCu";
if(std::fabs(xcERef - dftEnergy) > EPS)
{
printf("Sparse XC %s (grid %s) test failed: could not reproduce the same energy.\n"
"Computed: %25.22Lf diff: %g eps: %g\n", functionalName, gridStr.c_str(),
static_cast<long double>(dftEnergy), double(xcERef-dftEnergy),
double(EPS));
return false;
}
if(!failed) {
printf("Sparse XC %-10s (grid %s) test OK\n", functionalName, gridStr.c_str());
unlink("ergoscf.out");
} else {
printf("Sparse XC %-10s (grid %s) test FAILED\n", functionalName, gridStr.c_str());
}
return !failed;
}
static bool
small_calculation(const IntegralInfo& ii)
{
#if 0
/* these used to work at some point in time */
static const long double XCRefBLYP[2][2] = {
{ -0.6469105968311400356582017L, -0.3406940239203784543807908L },
{ -0.3406940239203784543807908L, -0.3377037854748100635876931L }
};
static const long double REF_XC_ENERGY_BLYP = -1.3018204657660243451014L;
static const long double XCRefSVWN5[2][2] = {
{ -0.6219879322708015512524184L, -0.3367149426990971624717303L },
{ -0.3367149426990971624717303L, -0.3428892519010255774368490L }
};
static const long double REF_XC_ENERGY_SVWN5 = -1.2452936316020187427307L;
#else
/* gcc version 4.5.1 20100924 (Red Hat 4.5.1-4) (GCC) on x86_64
yields different long double results! */
static const long double XCRefBLYP[2][2] = {
{ -0.6469105968311401637566883L, -0.3406940239203784613196847L },
{ -0.3406940239203784613196847L, -0.3377037854748099993487144L }
};
static const long double REF_XC_ENERGY_BLYP = -1.3018204657660245257295L;
static const long double XCRefSVWN5[2][2] = {
{ -0.6219879322708016678583620L, -0.3367149426990971693564141L },
{ -0.3367149426990971693564141L, -0.3428892519010255078039644L }
};
static const long double REF_XC_ENERGY_SVWN5 = -1.2452936316020189159862L;
#endif
int errors = 0;
/* Tests with standard grid. */
if (!small_calculation_core(ii, "BLYP", XCRefBLYP, REF_XC_ENERGY_BLYP, false))
errors++;
if (!small_calculation_core(ii, "SVWN5", XCRefSVWN5, REF_XC_ENERGY_SVWN5, false))
errors++;
/* Remove grid files to make sure new grid is generated. */
grid_free_files();
/* Tests with HiCu grid. */
if (!small_calculation_core(ii, "BLYP", XCRefBLYP, REF_XC_ENERGY_BLYP, true))
errors++;
if (!small_calculation_core(ii, "SVWN5", XCRefSVWN5, REF_XC_ENERGY_SVWN5, true))
errors++;
return errors == 0;
}
static bool
benchmark_calculation(const IntegralInfo& ii, int sideLength)
{
static const int CHARGE = 2;
static const double REF_XC_ENERGY
= -0.448990406907508*sideLength*sideLength;
static const double DISTANCE_BETWEEN_ATOMS = 3.5;
bool failed = false;
int nElectrons = 0;
Molecule mol;
for(int i=0; i<sideLength; i++) {
for(int j=0; j<sideLength; j++)
mol.addAtom(CHARGE, 0,
i*DISTANCE_BETWEEN_ATOMS,j*DISTANCE_BETWEEN_ATOMS);
nElectrons += CHARGE*sideLength;
}
static const int BL_SIZE = 32;
static const int BL_FACTOR = 8;
symmMatrix xcMatrix;
ergo_real dftEnergy;
std::vector<int> permutationHML;
calculation_shared(ii, mol, "SVWN5", BL_SIZE, BL_FACTOR,
xcMatrix, &dftEnergy, permutationHML, false);
#if 1
/* We give some room to accumulation error. */
static const ergo_real EPS = 1e-5;
if(std::fabs(REF_XC_ENERGY - dftEnergy) > EPS*sideLength*sideLength)
{
printf("DFT XC test failed: could not reproduce the same energy.\n");
printf("Computed: %25.22Lf Reference: %25.2Lf diff: %g\n",
static_cast<long double>(dftEnergy),
static_cast<long double>(REF_XC_ENERGY),
double(dftEnergy-REF_XC_ENERGY));
return false;
}
#endif
//unlink("ergoscf.out");
return !failed;
}
static bool
mol_calculation(const IntegralInfo& ii, const char *fname)
{
bool failed = false;
Molecule mol;
char *basisSetFile = NULL;
int res = mol.setFromMoleculeFile(fname, 0, &basisSetFile);
if(res != 0)
return false;
static const int BL_SIZE = 32;
static const int BL_FACTOR = 8;
symmMatrix xcMatrix;
ergo_real dftEnergy;
std::vector<int> permutationHML;
calculation_shared(ii, mol, "SVWN5", BL_SIZE, BL_FACTOR,
xcMatrix, &dftEnergy, permutationHML, false);
//unlink("ergoscf.out");
return !failed;
}
int main(int argc, char *argv[])
{
static const int PROBLEM_SQUARE_SIDE_LENGTH = 60;
IntegralInfo ii(true);
dft_init();
const char *tmpdir = getenv("TMPDIR");
tmpdir = tmpdir ? tmpdir : "/tmp";
grid_set_tmpdir(tmpdir);
bool success;
if(getenv("RUN_BENCHMARK")) {
printf("Running an XC benchmark, tmpdir=%s.\n", tmpdir);
success = benchmark_calculation(ii, PROBLEM_SQUARE_SIDE_LENGTH);
} else {
if(argc>1) {
int side = strtol(argv[1], NULL, 10);
if(side)
success = benchmark_calculation(ii, side);
else
success = mol_calculation(ii, argv[1]);
} else
success = small_calculation(ii);
}
printf("Success: %s\n", success ? "YES" : "NO");
return success ? 0 : 1;
}
|