File: GetDensFromFock.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (742 lines) | stat: -rw-r--r-- 29,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file GetDensFromFock.h
 *
 *  @brief Routines for getting density matrix from a given Fock
 *         matrix.
 *
 *  @author Anastasia Kruchinina <em>responsible</em>
 *  @author Elias Rudberg
 */

#ifndef GETDENSFROMFOCKHEADER
#define GETDENSFROMFOCKHEADER

#include "realtype.h"
#include "matrix_typedefs.h"
#include "matrix_typedefs_chtml.h"
#include "transform.h"
#include "output.h"



/** GetDensFromFock class containing parameters and functions for computing density matrix.
 *
 * Flags are set to undefined value by default.  User should define
 * them explicitly, otherwise exception is thrown if undefined flag is
 * used.
 */
class GetDensFromFock
{
public:

   static const int UNDEF_VALUE_UINT;
   static const std::string NA_STRING;

   static const bool BOOL_TRUE;
   static const bool BOOL_FALSE;

   void create_checkpoint(symmMatrix&   Finput,       /**< [in] Effective Hamiltonian matrix (written to file) */
                          symmMatrix&   F_ort_prev,   /**< [in/out]
                                                       *    Input: Previous F matrix in orthogonal basis. (written to file)
                                                       *    Output: New F matrix in orthogonal basis ( ZT*Finput*Z ). (written to file) */
                          generalVector *eigVecLUMO,  /**< [out] LUMO eigenvector */
                          generalVector *eigVecHOMO,  /**< [out] HOMO eigenvector */
                          std::string   IDstr         /**< [in] File identificator; added to the name of each file */
                          );


   static void restore_from_checkpoint(GetDensFromFock& DensFromFock,    /**< [out] Instance of GetDensFromFock class contatining all data for computing the density matrix */
                                       symmMatrix&      Finput,          /**< [out] Effective Hamiltonian matrix (written to file) */
                                       symmMatrix&      F_ort_prev,      /**< [out] F matrix in orthogonal basis ( ZT*Finput*Z ). (written to file) */
                                       generalVector    *eigVecLUMO,     /**< [out] LUMO eigenvector */
                                       generalVector    *eigVecHOMO,     /**< [out] HOMO eigenvector */
                                       std::string      checkpoint_path, /**< [out] HOMO eigenvector */
                                       std::string      IDstr,           /**< [in]  File identificator; added to the name of each file. */
                                       int              SCF_step         /**< [in]  SCF step which should be restored; added to the name of each file in given SCF cycle. */
                                       );


   //constructor
   GetDensFromFock()
   {
      do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "Create object from GetDensFromFock.");

      // set all variables and flags to default values
      n = UNDEF_VALUE_UINT;
      noOfOccupiedOrbs       = UNDEF_VALUE_UINT;
      factor                 = UNDEF_VALUE_UINT;
      invCholFactor_euclnorm = 0;
      maxMul                 = 0;
      plot_puri_results      = BOOL_FALSE;
      SCF_step               = UNDEF_VALUE_UINT;

      use_diagonalization     = BOOL_FALSE;
      use_purification        = BOOL_FALSE;

      electronicTemperature                = 0;
      gap_expected_lower_bound             = 0;
      eigvalueErrorLimit                   = 0;
      subspaceErrorLimit                   = 0;
      puri_eig_acc_factor_for_guess        = 0;
      use_diag_on_error       = BOOL_FALSE;
      use_diag_on_error_guess = BOOL_FALSE;

      create_m_files     = BOOL_FALSE;
      output_homo_and_lumo_eigenvectors    = BOOL_FALSE;
      number_of_occupied_eigenvectors = 0;
      number_of_unoccupied_eigenvectors = 0;
      go_back_X_iter_proj_method = 0;
      jump_over_X_iter_proj_method = 0;
      ignore_purification_failure          = BOOL_FALSE;
      use_rand_perturbation_for_alleigsint = BOOL_FALSE;
      use_acceleration                   = BOOL_FALSE;
      use_new_stopping_criterion         = BOOL_FALSE;
      store_all_eigenvalues_to_file      = BOOL_FALSE;
      try_eigv_on_next_iteration_if_fail = BOOL_FALSE;

      leavesSizeMax         = UNDEF_VALUE_UINT;
      blocksize             = UNDEF_VALUE_UINT;

      eigenvectors_method                 = NA_STRING;
      eigenvectors_iterative_method       = NA_STRING;
      use_prev_vector_as_initial_guess    = BOOL_FALSE;
      puri_compute_eigv_in_each_iteration = BOOL_FALSE;
      run_shift_and_square_method_on_F    = BOOL_FALSE;
      save_permuted_F_matrix_in_bin       = BOOL_FALSE;

      eigensolver_accuracy = 0;
      eigensolver_maxiter  = 0;

      std::string stats_prefix = ""; // default value

      truncationNormPurification = mat::euclNorm;  // default value
      stopCriterionNormPurification = mat::euclNorm;  // default value

      clean_eigs_intervals();
      clean_puri_stats();


      filenameFinput        = "matrix_Finput";
      filenameF_ort_prev    = "matrix_F_ort_prev";
      filenameeigVecLUMO    = "vector_eigVecLUMO";
      filenameeigVecHOMO    = "vector_eigVecHOMO";
      filenameOverlap       = "matrix_Overlap";
      filenameD_ort_prev    = "matrix_D_ort_prev";
      filenameinvCholFactor = "matrix_invCholFactor";
      file_for_basic_types  = "basic_types";
   }

   /** Choose which method to use for computing the density matrix from Fock matrix.
    */
   int get_dens_from_fock(symmMatrix&   Finput,           /**< [in] Effective Hamiltonian matrix. (written to file) */
                          symmMatrix&   resultDens,       /**< [out] Density matrix. (written to file) */
                          symmMatrix&   F_ort_prev       /**< [in/out]
                                                           *      Input: Previous F matrix in orthogonal basis. (written to file)
                                                           *      Output: New F matrix in orthogonal basis ( ZT*Finput*Z ). (written to file) */
                          );



   /** Use recursive expansion for computing the density matrix from Fock matrix.
    */
   int get_dens_from_fock_sparse(
     symmMatrix&   F,                  /**< [in] Effective Hamiltonian matrix. (written to file) */
     symmMatrix&   resultDens,         /**< [out] Density matrix. (written to file) */
     symmMatrix&   F_ort_prev         /**< [in/out] 
     Input: Previous F matrix in orthogonal basis. (written to file)
     Output: New F matrix in orthogonal basis ( ZT*Finput*Z ). (written to file) 
     */
                                 );


   void get_computed_eigenpairs(    
     std::vector<generalVector> &eigVecUNOCCref, /**< [out] Unoccupied eigenvectors */
     std::vector<generalVector> &eigVecOCCref,  /**< [out] Occupied eigenvectors */
     std::vector<ergo_real> &eigValUNOCCref,  /**< [out] Unoccupied eigenvalues */
     std::vector<ergo_real> &eigValOCCref /**< [out] Occupied eigenvalues */
   )
   {
     eigVecUNOCCref = eigVecUNOCC;
     eigVecOCCref = eigVecOCC;
     eigValOCCref = eigValOCC;
     eigValUNOCCref = eigValUNOCC;
   }

   /** Set bounds for HOMO and LUMO eigenvalues to -/+ inf, thus remove
    *  any known bounds.
    */
   inline void clean_eigs_intervals()
   {
      homoInterval_Finput = intervalType(-1e22, 1e22);
      lumoInterval_Finput = intervalType(-1e22, 1e22);
      homoInterval_Finput = intervalType(-1e22, 1e22);
      lumoInterval_Finput = intervalType(-1e22, 1e22);

      homoInterval_F_ort_prev = intervalType(-1e22, 1e22);
      lumoInterval_F_ort_prev = intervalType(-1e22, 1e22);
      homoInterval_F_ort_prev = intervalType(-1e22, 1e22);
      lumoInterval_F_ort_prev = intervalType(-1e22, 1e22);
   }
   



   inline void set_SCF_step(int step /**< [in] Current SCF step */)
   { SCF_step = step; }
   inline void unset_SCF_step()
   { SCF_step = UNDEF_VALUE_UINT; }


   /** Plot figures from the  recursive expansion.
    */
   inline void set_generate_figures(std::string str = "" /**< [in] String added to each generated file. */)
   {
      if (create_m_files)
      {
         assert(SCF_step >= 0);
         plot_puri_results     = BOOL_TRUE;
         plot_puri_results_str = str;
      }
   }

   /** Do not plot figures from the  recursive expansion.
    */
   inline void unset_generate_figures()
   {
      plot_puri_results     = BOOL_FALSE;
      plot_puri_results_str = "";
   }

   inline void set_general_params(const int n_,                   /**< [in] Number of basis functions. */
                                  mat::SizesAndBlocks const& matrixSizesAndBlocks_ /**< [in] Matrix library parameters. */
                                  )
   {
      assert(n_ >= 1);
      n = n_;
      matrixSizesAndBlocks = matrixSizesAndBlocks_;
   }

   inline void set_cht_matrix_params(const int leavesSizeMax_,  /**< [in] CHTMatrix library parameter leavesSizeMax. */
                                     const int blocksize_       /**< [in] CHTMatrix library parameter blocksize. */
                                     )
   {
      assert(leavesSizeMax_ >= 1);
      assert(blocksize_ >= 1);
      leavesSizeMax = leavesSizeMax_;
      blocksize     = blocksize_;
   }

   inline void get_SizesAndBlocks(mat::SizesAndBlocks& matrixSizesAndBlocks_   /**< [out] Matrix library parameters. */
                                  ) const
   {
      matrixSizesAndBlocks_ = matrixSizesAndBlocks;
   }

   /** Set truncation norm used in the recursive expansion.
    *  Possible norms: spectral, Frobenius or mixed.
    */
   inline void set_truncationNormPurification(mat::normType const truncationNormPurification_ /**< [in]  Norm used in truncation. */)
   { truncationNormPurification = truncationNormPurification_; }

   /** Set stopping criterion norm used in the recursive expansion.
    *  Possible norms: spectral, Frobenius or mixed.
    */
   inline void set_stopCriterionNormPurification(mat::normType const stopCriterionNormPurification_ /**< [in] Norm used in the stopping criterion. */)
   { stopCriterionNormPurification = stopCriterionNormPurification_; }


   inline void do_restricted_calculations()
   { factor = 2; }

   inline void do_unrestricted_calculations()
   { factor = 1; }

   inline void set_no_occupied_orbs(int noOfOccupiedOrbs_)
   {
      assert(noOfOccupiedOrbs_ >= 0);
      noOfOccupiedOrbs = noOfOccupiedOrbs_;
   }

   inline void clean_puri_stats()
   { puri_stats.clear(); }


   inline void set_invCholFactor(triangMatrix const& invCholFactor_,
                                 ergo_real           invCholFactor_euclnorm_)
   {
      invCholFactor = invCholFactor_;
      assert(invCholFactor_euclnorm_ >= 0);
      invCholFactor_euclnorm = invCholFactor_euclnorm_;
   }

   inline void set_gap_expected_lower_bound(ergo_real gap_expected_lower_bound_)
   {
      assert(gap_expected_lower_bound_ >= 0);
      gap_expected_lower_bound = gap_expected_lower_bound_;
   }

   /** Set maximum allowed number of iterations in recursive expansion.
    */
   inline void set_purification_maxmul(ergo_real purification_maxmul_)
   {
      assert(purification_maxmul_ > 0);
      maxMul = purification_maxmul_;
   }
   
   inline void set_number_of_eigenvectors_to_compute(int occ, int unocc)
   {
     number_of_occupied_eigenvectors = occ;
     number_of_unoccupied_eigenvectors = unocc;
   }
   
   inline void set_projection_method_params(int go_back, int step)
   {
     go_back_X_iter_proj_method = go_back;
     jump_over_X_iter_proj_method = step; 
   }

   /****  SET/UNSET SECTION *****/

   inline int get_purification_create_m_files() const
   { return create_m_files == BOOL_TRUE; }
   inline void set_purification_create_m_files()
   { create_m_files = BOOL_TRUE; }
   inline void unset_purification_create_m_files()
   { create_m_files = BOOL_FALSE; }



   inline int get_output_homo_and_lumo_eigenvectors() const
   { return output_homo_and_lumo_eigenvectors == BOOL_TRUE; }
   inline void set_output_homo_and_lumo_eigenvectors()
   { output_homo_and_lumo_eigenvectors = BOOL_TRUE; }
   inline void unset_output_homo_and_lumo_eigenvectors()
   { output_homo_and_lumo_eigenvectors = BOOL_FALSE; }


   inline int get_purification_ignore_failure() const
   { return ignore_purification_failure == BOOL_TRUE; }
   inline void set_purification_ignore_failure()
   { ignore_purification_failure = BOOL_TRUE; }
   inline void unset_purification_ignore_failure()
   { ignore_purification_failure = BOOL_FALSE; }


   inline int get_use_rand_perturbation_for_alleigsint() const
   { return use_rand_perturbation_for_alleigsint == BOOL_TRUE; }
   inline void set_purification_use_rand_perturbation_for_alleigsint()
   { use_rand_perturbation_for_alleigsint = BOOL_TRUE; }
   inline void unset_purification_use_rand_perturbation_for_alleigsint()
   { use_rand_perturbation_for_alleigsint = BOOL_FALSE; }

   inline int get_use_diagonalization() const
   { return use_diagonalization == BOOL_TRUE; }
   inline void set_use_diagonalization()
   { use_diagonalization = BOOL_TRUE; }
   inline void unset_use_diagonalization()
   { use_diagonalization = BOOL_FALSE; }


   inline int get_use_purification() const
   { return use_purification == BOOL_TRUE; }
   inline void set_use_purification()
   { use_purification = BOOL_TRUE; }
   inline void unset_use_purification()
   { use_purification = BOOL_FALSE; }


   inline int get_use_diag_on_error_guess() const
   { return use_diag_on_error_guess == BOOL_TRUE; }
   inline void set_use_diag_on_error_guess()
   { use_diag_on_error_guess = BOOL_TRUE; }
   inline void unset_use_diag_on_error_guess()
   { use_diag_on_error_guess = BOOL_FALSE; }


   inline int get_use_diag_on_error() const
   { return use_diag_on_error == BOOL_TRUE; }
   inline void set_use_diag_on_error()
   { use_diag_on_error = BOOL_TRUE; }
   inline void unset_use_diag_on_error()
   { use_diag_on_error = BOOL_FALSE; }


   inline std::string get_stats_prefix() const
   { return stats_prefix; }
   inline void set_stats_prefix(std::string stats_prefix_)
   { stats_prefix = stats_prefix_; }
   inline void unset_stats_prefix()
   { stats_prefix = ""; }


   inline int get_use_acceleration() const
   { return use_acceleration == BOOL_TRUE; }
   inline void set_use_acceleration()
   { use_acceleration = BOOL_TRUE; }
   inline void unset_use_acceleration()
   { use_acceleration = BOOL_FALSE; }

   inline int get_use_new_stopping_criterion() const
   { return use_new_stopping_criterion == BOOL_TRUE; }
   inline void set_use_new_stopping_criterion()
   { use_new_stopping_criterion = BOOL_TRUE; }
   inline void unset_use_new_stopping_criterion()
   { use_new_stopping_criterion = BOOL_FALSE; }

   inline int get_store_all_eigenvalues_to_file() const
   { return store_all_eigenvalues_to_file == BOOL_TRUE; }
   inline void set_store_all_eigenvalues_to_file()
   { store_all_eigenvalues_to_file = BOOL_TRUE; }
   inline void unset_store_all_eigenvalues_to_file()
   { store_all_eigenvalues_to_file = BOOL_FALSE; }

   inline int get_save_permuted_F_matrix_in_bin()
   { return save_permuted_F_matrix_in_bin == BOOL_TRUE; }
   inline void set_save_permuted_F_matrix_in_bin()
   { save_permuted_F_matrix_in_bin = BOOL_TRUE; }
   inline void unset_save_permuted_F_matrix_in_bin()
   { save_permuted_F_matrix_in_bin = BOOL_FALSE; }



   inline int get_puri_compute_eigv_in_each_iteration()
   { return puri_compute_eigv_in_each_iteration == BOOL_TRUE; }
   inline void set_puri_compute_eigv_in_each_iteration()
   { puri_compute_eigv_in_each_iteration = BOOL_TRUE; }
   inline void unset_puri_compute_eigv_in_each_iteration()
   { puri_compute_eigv_in_each_iteration = BOOL_FALSE; }


   inline int get_run_shift_and_square_method_on_F()
   { return run_shift_and_square_method_on_F == BOOL_TRUE; }
   inline void set_run_shift_and_square_method_on_F()
   { run_shift_and_square_method_on_F = BOOL_TRUE; }
   inline void unset_run_shift_and_square_method_on_F()
   { run_shift_and_square_method_on_F = BOOL_FALSE; }


   inline int get_try_eigv_on_next_iteration_if_fail()
   { return try_eigv_on_next_iteration_if_fail == BOOL_TRUE; }
   inline void set_try_eigv_on_next_iteration_if_fail()
   { try_eigv_on_next_iteration_if_fail = BOOL_TRUE; }
   inline void unset_try_eigv_on_next_iteration_if_fail()
   { try_eigv_on_next_iteration_if_fail = BOOL_FALSE; }


   inline int get_use_prev_vector_as_initial_guess()
   { return use_prev_vector_as_initial_guess == BOOL_TRUE; }
   inline void set_use_prev_vector_as_initial_guess()
   { use_prev_vector_as_initial_guess = BOOL_TRUE; }
   inline void unset_use_prev_vector_as_initial_guess()
   { use_prev_vector_as_initial_guess = BOOL_FALSE; }


   inline void set_diagonalization_params(ergo_real   electronicTemperature_,
                                          symmMatrix& overlapMatrix_)
   {
      set_overlapMatrix(overlapMatrix_);
      assert(electronicTemperature_ >= 0);
      electronicTemperature = electronicTemperature_;
   }

   inline void set_overlapMatrix(symmMatrix& overlapMatrix_)
   { overlapMatrix = overlapMatrix_; }


   inline void set_purification_limits(ergo_real subspaceErrorLimit_,
                                       ergo_real eigvalueErrorLimit_ = 0,
                                       ergo_real puri_eig_acc_factor_for_guess = 0)
   {
      set_eigvalueErrorLimit(eigvalueErrorLimit_);
      set_subspaceErrorLimit(subspaceErrorLimit_);
      set_puri_eig_acc_factor_for_guess(puri_eig_acc_factor_for_guess);
   }

   /** Set maximum allowed error in eigenvalues of the density matrix.
    */
   inline void set_eigvalueErrorLimit(ergo_real eigvalueErrorLimit_)
   { eigvalueErrorLimit = eigvalueErrorLimit_; }

   /** Set maximum allowed error in invariant subspaces of the density
    * matrix.
    */
   inline void set_subspaceErrorLimit(ergo_real subspaceErrorLimit_)
   { subspaceErrorLimit = subspaceErrorLimit_; }

   /** Set puri_eig_acc_factor_for_guess parameter.
    *
    * Obsolete parameter needed for the old stopping criterion for
    * creating the initial guess.
    */
   inline void set_puri_eig_acc_factor_for_guess(ergo_real puri_eig_acc_factor_for_guess_)
   { puri_eig_acc_factor_for_guess = puri_eig_acc_factor_for_guess_; }



   // get some results from the purification

   ergo_real get_result_entropy_term() const
   { return resultEntropyTerm; }

   inline void get_puri_stats(std::map<std::string, double>& puri_stats_) const
   { puri_stats_ = puri_stats; }



   // Fprev is effective Hamiltonian matrix (=Finput)
   // Intervals contain the homo and lumo eigenvalues of Fprev
   inline void set_eigs_Fprev(intervalType& homoInterval_Finput_,
                              intervalType& lumoInterval_Finput_)
   {
      homoInterval_Finput = intervalType(homoInterval_Finput_);
      lumoInterval_Finput = intervalType(lumoInterval_Finput_);
   }

   inline void get_eigs_Fprev(intervalType& homoInterval_Finput_,
                              intervalType& lumoInterval_Finput_) const
   {
      homoInterval_Finput_ = intervalType(homoInterval_Finput);
      lumoInterval_Finput_ = intervalType(lumoInterval_Finput);
   }

   // F_ort_prev is matrix in orthogonal basis
   // Intervals contain the homo and lumo eigenvalues of F_ort_prev
   inline void set_eigs_F_ort_prev(intervalType& homoInterval_F_ort_prev_,
                                   intervalType& lumoInterval_F_ort_prev_)
   {
      homoInterval_F_ort_prev = intervalType(homoInterval_F_ort_prev_);
      lumoInterval_F_ort_prev = intervalType(lumoInterval_F_ort_prev_);
   }

   inline void get_eigs_F_ort_prev(intervalType& homoInterval_F_ort_prev_,
                                   intervalType& lumoInterval_F_ort_prev_) const
   {
      homoInterval_F_ort_prev_       = intervalType(homoInterval_F_ort_prev);
      lumoInterval_F_ort_prev_       = intervalType(lumoInterval_F_ort_prev);
   }

   inline ergo_real get_eigvalueErrorLimit() const
   { return eigvalueErrorLimit; }
   inline ergo_real get_subspaceErrorLimit() const
   { return subspaceErrorLimit; }
   inline ergo_real get_puri_eig_acc_factor_for_guess() const
   { return puri_eig_acc_factor_for_guess; }

   inline void compute_eigenvectors(std::string eigenvectors_method_,     
                                    std::string eigenvectors_iterative_method_, 
                                    ergo_real eigensolver_accuracy_, 
                                    int eigensolver_maxiter_,
                                    int use_prev_vector_as_initial_guess_, 
                                    int try_eigv_on_next_iteration_if_fail_)
   {
      assert(eigenvectors_method_ == "square" || eigenvectors_method_ == "projection");
      eigenvectors_method = eigenvectors_method_;

      assert(eigenvectors_iterative_method_ == "power" || eigenvectors_iterative_method_ == "lanczos");
      eigenvectors_iterative_method = eigenvectors_iterative_method_;

      eigensolver_accuracy = eigensolver_accuracy_;
      eigensolver_maxiter  = eigensolver_maxiter_;

      if (use_prev_vector_as_initial_guess_ > 0)
      {
         set_use_prev_vector_as_initial_guess();
      }
      else
      {
         unset_use_prev_vector_as_initial_guess();
      }
      if (try_eigv_on_next_iteration_if_fail_ > 0)
      {
         set_try_eigv_on_next_iteration_if_fail();
      }
      else
      {
         unset_try_eigv_on_next_iteration_if_fail();
      }

   }

   inline void compute_eigenvectors_extra(int puri_compute_eigv_in_each_iteration_, int run_shift_and_square_method_on_F_)
   {
      if (puri_compute_eigv_in_each_iteration_ > 0)
      {
         set_puri_compute_eigv_in_each_iteration();
      }
      else
      {
         unset_puri_compute_eigv_in_each_iteration();
      }

      if (run_shift_and_square_method_on_F_ > 0)
      {
         set_run_shift_and_square_method_on_F();
      }
      else
      {
         unset_run_shift_and_square_method_on_F();
      }
   }

private:

   int SCF_step;



   bool use_diagonalization;                  /**< Flag to turn on diagonalization. */

   bool use_purification;                     /**< Flag to turn on purification. */

   bool store_all_eigenvalues_to_file;        /**< Store eigenvalues to the file when doing diagonalization.
                                              * NOTE: works just with diagonalization */

   bool try_eigv_on_next_iteration_if_fail;   /**< For square method: if eigenvector is not computed in iteration
                                              * i, try to compute it in iteration i+1 */

   ergo_real electronicTemperature;          /**< Electronic temperature */

   ergo_real gap_expected_lower_bound;       /**< Expected lower bound for the gap to be used in early iterations.  */

   ergo_real eigvalueErrorLimit;             /**< Tolerated deviation of eigenvalues from 0 and 1 in the computed density matrix.  */

   ergo_real subspaceErrorLimit;             /**< Tolerated error in the occupied subspace as measured by the sinus of the largest canonical angle. */

   ergo_real puri_eig_acc_factor_for_guess;  /**< With this number will be multiplied the tolerated deviation of
                                              * eigenvalues from 0 and 1 in the computed density matrix for the
                                              * initial guess density matrix */

   bool use_diag_on_error;                    /**< Flag to fall back on diagonalization if purification fails. */
   bool use_diag_on_error_guess;

   bool create_m_files;                       /**< Flag to create m-files with information about the purification process.  */

   bool output_homo_and_lumo_eigenvectors;    /**< Compute homo and lumo eigenvectors and write them to the file */
   
   int number_of_occupied_eigenvectors;    /**< Number of occupied eigenvectors to compute. */
   
   int number_of_unoccupied_eigenvectors;    /**< Number of unoccupied eigenvectors to compute. */
   
   int go_back_X_iter_proj_method; /**< Parameter used in the projection method for computing eigenvectors. Defines the iteration to start computation of the eigenvectors. */
   
   int jump_over_X_iter_proj_method;  /**< Parameter used in the projection method for computing eigenvectors. Defines how many iterations will be skipped before the next attempt if some eigenvectors are not computed. */

   bool use_prev_vector_as_initial_guess;     /**< Use eigenvector from the previous SCF cycle as an initial guess in this cycle */

   bool puri_compute_eigv_in_each_iteration;  /**< Compute eigenvectors in each iteration of the recursive expansion. */

   bool run_shift_and_square_method_on_F;     /**< (for comparison) Run shift_and_square method to
                                              * get eigenvectors of the matrix F for various shifts. */

   bool save_permuted_F_matrix_in_bin;        /**< Save sparse matrix F into bin file in the current permutation of rows and columns. */

   bool ignore_purification_failure;          /**< Continue even if purification fails to converge.  */

   bool use_rand_perturbation_for_alleigsint; /**< Apply a random
                                              * perturbation to (try
                                              * to) improve the
                                              * convergence speed of
                                              * Lanczos calculation of
                                              * extremal
                                              * eigenvalues.  */

   std::string stats_prefix;                 /**< Prefix to be added to statistics files. */

   bool plot_puri_results;                    /**< Plot results of the purification from this function call */

   std::string plot_puri_results_str;

   bool use_acceleration;                        /**< Use acceleration in the purification */

   bool use_new_stopping_criterion;              /**< Use new parameterless stopping criterion */

   std::string eigenvectors_method;             /**< Method for computing eigenvectors: square or projection */

   std::string eigenvectors_iterative_method;   /**< Iterative method for computing eigenvectors: power or lanczos */

   ergo_real eigensolver_accuracy;              /**< The accuracy for the eigenvalue problem solver */

   int eigensolver_maxiter;                     /**< Maximum number of iterations for the eigenvalue problem solver */

   int n;                                       /**< System size. */

   int noOfOccupiedOrbs;                        /**< Number of occupied orbitals.  */

   ergo_real factor;                            /**< Factor to scale the resulting density matrix.
                                                 * (for restricted vs unrestricted calc) */

   symmMatrix overlapMatrix;                    /**< Overlap matrix (written to file) */

   symmMatrix D_ort_prev;                       /**< Density matrix from previous SCF cycle (written to file) */

   triangMatrix invCholFactor;                  /**< Inverse Cholesky factor (written to file) */

   ergo_real invCholFactor_euclnorm;            /**< Euclidean norm of inverse Cholesky factor. */

   mat::normType truncationNormPurification;    /**< Norm to be used for truncation.  */

   mat::normType stopCriterionNormPurification; /**< Norm to be used for stopping criterion.  */

   int maxMul;                                  /**< Maximum allowed number of matrix multiplications in the purification */

   mat::SizesAndBlocks matrixSizesAndBlocks;    /**< Information about HML matrix block sizes etc. */

   int leavesSizeMax;                           /**< Information about leavesSizeMax and blocksize for CHTMatrix */
   int blocksize;                               /**< Information about leavesSizeMax and blocksize for CHTMatrix */

   intervalType homoInterval_Finput;
   intervalType lumoInterval_Finput;

   intervalType homoInterval_F_ort_prev;
   intervalType lumoInterval_F_ort_prev;

   ergo_real resultEntropyTerm;
   std::map<std::string, double> puri_stats;
   
   std::vector<generalVector> eigVecOCC;
   std::vector<generalVector> eigVecUNOCC;
   std::vector<ergo_real> eigValOCC;
   std::vector<ergo_real> eigValUNOCC;

   // Names of files needed for checkpoints
   const char *filenameFinput;
   const char *filenameF_ort_prev;
   const char *filenameeigVecLUMO;
   const char *filenameeigVecHOMO;
   const char *filenameOverlap;
   const char *filenameD_ort_prev;
   const char *filenameinvCholFactor;
   const char *file_for_basic_types;
};



#endif // GETDENSFROMFOCKHEADER