File: densfromf_full.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (299 lines) | stat: -rw-r--r-- 9,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file densfromf_full.cc

    @brief Routine get_dens_from_fock_full() for getting density
    matrix from a given Fock matrix using diagonalization.

    @author: Elias Rudberg <em>responsible</em>
*/

#include "densfromf_full.h"
#include "output.h"
#include <memory.h>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <fstream>
#include <sstream>
#include <iomanip>
#include "memorymanag.h"
#include "machine_epsilon.h"
#include "utilities.h"
#include "matrix_algebra.h"
#include "units.h"

#include "mat_gblas.h"
#include "matInclude.h"



/** get_f_orbs: use diagonalization to find the molecular orbitals
 * corresponding to given Fock matrix f.
 */
int
get_F_orbs(int n, 
	   const ergo_real* F, 
	   const ergo_real* ovl, 
	   ergo_real* cmo, 
	   ergo_real* eigv)
{
  Util::TimeMeter timeMeter;
  static int ITYPE=1;
  int lwork = 10*n;
  ergo_real* work = (ergo_real*)ergo_malloc(lwork*sizeof(ergo_real));
  ergo_real* s    = (ergo_real*)ergo_malloc(n*n*sizeof(ergo_real));
  
  memcpy(cmo, F,   n*n*sizeof(ergo_real));
  memcpy(s,   ovl, n*n*sizeof(ergo_real));
  /* solve f*cmo = ovl*cmo*eigv; note that it destroys s! */
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "calling LAPACK routine sygv, n = %i", n);
  int info = -1;
  mat::sygv(&ITYPE, "V", "L", &n, cmo, &n, s, &n, 
	    eigv, work, &lwork, &info);
  timeMeter.print(LOG_AREA_DENSFROMF, "sygv diagonalization");
  if(info != 0)
    {
      do_output(LOG_CAT_ERROR, LOG_AREA_DENSFROMF, "error in sygv");
      return -1;
    }

  ergo_free(work);
  ergo_free(s);

  return 0;
}


static void 
get_dens_from_cmo_zeroT(int n, 
			const ergo_real* cmo,
			const ergo_real* eigv,
			int noOfOccupiedOrbs, 
			ergo_real* dens,
			ergo_real & resultHomoLumoGap)
{
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "entering get_dens_from_cmo_zeroT, n = %i", n);
  Util::TimeMeter timeMeter;
  multiply_matrices_general_T_1(noOfOccupiedOrbs, n, noOfOccupiedOrbs, n, cmo, cmo, dens);
  for(int i = 0; i < n*n; i++)
    dens[i] *= 2;
  /*  compute bandgap */
  ergo_real E_HOMO = eigv[noOfOccupiedOrbs-1];
  ergo_real E_LUMO = eigv[noOfOccupiedOrbs-0];
  ergo_real E_min  = eigv[0];
  ergo_real E_max  = eigv[n-1];
  ergo_real bandGap = E_LUMO - E_HOMO;
  resultHomoLumoGap = bandGap;
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "get_dens_from_cmo finished, E_LUMO-E_HOMO = %12.8f Hartree = %12.8f eV", 
	    (double)bandGap,
	    (double)bandGap / UNIT_one_eV);
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "E_HOMO = %22.11f", (double)E_HOMO);
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "E_LUMO = %22.11f", (double)E_LUMO);
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "E_min  = %22.11f", (double)E_min );
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "E_max  = %22.11f", (double)E_max );
  timeMeter.print(LOG_AREA_DENSFROMF, "get_dens_from_cmo_zeroT");
}


static ergo_real x_times_ln_x(ergo_real x) {
  ergo_real eps = mat::getMachineEpsilon<ergo_real>();
  if(x < template_blas_sqrt(eps))
    return 0;
  return x * template_blas_log(x);
}

static void 
get_dens_from_cmo_FermiDiracDistr(int n, 
				  const ergo_real* cmo,
				  const ergo_real* eigv,
				  int noOfOccupiedOrbs, 
				  ergo_real* dens,
				  ergo_real electronicTemperature,
				  ergo_real & resultEntropyTerm)
{
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "entering get_dens_from_cmo_FermiDiracDistr, n = %i, nocc = %i, T = %12.6f", n, noOfOccupiedOrbs, electronicTemperature);
  Util::TimeMeter timeMeter;
  // Set occupation numbers according to Fermi-Dirac distribution.
  ergo_real T = electronicTemperature;
  ergo_real k_B = 1; // we use units such that k_B = 1
  ergo_real mu_min  = eigv[0];
  ergo_real mu_max  = eigv[n-1];
  ergo_real trace = 0;
  ergo_real mu;
  std::vector<ergo_real> occupationNumbers(n);
  int maxiter = 1000;
  int niter = 0;
  while(1) {
    ergo_real mu_hi = mu_max;
    ergo_real mu_lo = mu_min;
    while(1) {
      niter++;
      mu = (mu_hi + mu_lo) / 2;
      for(int i = 0; i < n; i++)
	occupationNumbers[i] = (ergo_real)1 / (template_blas_exp((eigv[i] - mu) / (k_B * T)) + 1);
      trace = 0;
      for(int i = 0; i < n; i++)
	trace += occupationNumbers[i];
      if(trace < noOfOccupiedOrbs)
	mu_lo = mu;
      else
	mu_hi = mu;
      // Emanuel comment: use some kind of relative error here,
      // otherwise we do not converge if mu is small or large
      if(mu_hi - mu_lo <= (template_blas_fabs(mu_hi)+template_blas_fabs(mu_lo))*100*mat::getMachineEpsilon<ergo_real>())
	break;
      if (niter >= maxiter)
	throw "Reached maxiter in Fermi function.";
    }
    // Check relative occupation error, if large we try to expand the
    // search interval
    if(template_blas_fabs(noOfOccupiedOrbs - trace)  < 
       std::abs(noOfOccupiedOrbs)*10000*mat::getMachineEpsilon<ergo_real>())
      break;
    ergo_real mu_min_max_diff = mu_max - mu_min;
    mu_min = mu_min - mu_min_max_diff;
    mu_max = mu_max + mu_min_max_diff;
  }
  do_output(LOG_CAT_INFO, LOG_AREA_DENSFROMF, "In get_dens_from_cmo_FermiDiracDistr, final trace = %12.6f, chemical potential = %12.6f", trace, mu);
  for(int j = 0; j < n; j++)
    for(int k = 0; k < n; k++)
      dens[j*n+k] = 0;
  for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++)
      for(int k = 0; k < n; k++)
	dens[j*n+k] += occupationNumbers[i] * cmo[i*n+j] * cmo[i*n+k];
  }
  for(int i = 0; i < n*n; i++)
    dens[i] *= 2;
  // Now compute electronic entropy term.
  resultEntropyTerm = 0;
  for(int i = 0; i < n; i++) {
    ergo_real lambda_i = occupationNumbers[i];
    resultEntropyTerm += (k_B * T) * ( x_times_ln_x(lambda_i) + x_times_ln_x(1-lambda_i) );
  }
  resultEntropyTerm *= 2;
  timeMeter.print(LOG_AREA_DENSFROMF, "get_dens_from_cmo_FermiDiracDistr");
}


int 
get_dens_from_fock_full(int n, 
			int noOfOccupiedOrbs, 
			ergo_real* result_P, 
			const ergo_real* F, 
			const ergo_real* ovl, 
			ergo_real factor,
			ergo_real electronicTemperature,
			ergo_real & resultEntropyTerm,
			ergo_real & resultHomoLumoGap,
			int store_all_eigenvalues_to_file, 
			int number_of_occ_eigenvectors, 
			int number_of_unocc_eigenvectors, 
			std::vector<std::vector<ergo_real> > &eigVecOCC, 
			std::vector<std::vector<ergo_real> > &eigVecUNOCC, 
			std::vector<ergo_real> &eigValOCC, 
			std::vector<ergo_real> &eigValUNOCC
			)
{
  if(noOfOccupiedOrbs == 0) {
    memset(result_P, 0, n*n*sizeof(ergo_real));
    return 0;
  }
	
	assert(number_of_occ_eigenvectors <= noOfOccupiedOrbs);
	assert(number_of_unocc_eigenvectors <= n-noOfOccupiedOrbs);
	
  Util::TimeMeter timeMeter;
  ergo_real* cmo  = (ergo_real*)ergo_malloc(n*n*sizeof(ergo_real));
  ergo_real* eigv = (ergo_real*)ergo_malloc(n*sizeof(ergo_real));
  if(get_F_orbs(n, F, ovl, cmo, eigv) != 0)
    return -1;
  if(electronicTemperature == 0)
    get_dens_from_cmo_zeroT(n, cmo, eigv, noOfOccupiedOrbs, result_P, resultHomoLumoGap);
  else {
    get_dens_from_cmo_FermiDiracDistr(n, cmo, eigv, noOfOccupiedOrbs, result_P, electronicTemperature, resultEntropyTerm);
    resultHomoLumoGap = -1; // Gap not defined in FermiDiracDistr case
  }

  // Save all eigenvalues to the file.
  // Functionality is used for plotting eigenspectrum of the matrix F.
  if(store_all_eigenvalues_to_file)
    {	
      do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Storing eigenvalues of the matrix F into the file.");

      std::ofstream file;
      file.open ("eigv_F.out");
      if (!file.is_open())
	throw "Error opening file for storing eigenvalues.";

      for (int ind = 0; ind < n; ind++) 
	file << std::fixed << std::setprecision(12) << (double)eigv[ind] << std::endl;
      file.close();  
    } // end of store_all_eigenvalues_to_file


  if(number_of_occ_eigenvectors > 0)
	{
		assert((int)eigVecOCC.size() >= number_of_occ_eigenvectors);
		assert((int)eigValOCC.size() >= number_of_occ_eigenvectors);
		for (int k = 0; k < number_of_occ_eigenvectors; k++) {
			eigVecOCC[k].resize(n);
			memcpy(&eigVecOCC[k][0], &cmo[n*(noOfOccupiedOrbs-1-k)], 
			n*sizeof(ergo_real));
			eigValOCC[k] = eigv[noOfOccupiedOrbs-1-k];
		}
	}
	if(number_of_unocc_eigenvectors > 0)
	{
		assert((int)eigVecUNOCC.size() >= number_of_unocc_eigenvectors);
		assert((int)eigValUNOCC.size() >= number_of_occ_eigenvectors);
		for (int k = 0; k < number_of_unocc_eigenvectors; k++) {
			eigVecUNOCC[k].resize(n);
			memcpy(&eigVecUNOCC[k][0], &cmo[n*(noOfOccupiedOrbs+k)], 
			n*sizeof(ergo_real));
			eigValUNOCC[k] = eigv[noOfOccupiedOrbs+k];
		}
	}			
			
  ergo_free(cmo);
  ergo_free(eigv);  

  // Take factor into account (factor is 2 for restricted case, 1 for unrestricted case).
  for(int i = 0; i < n*n; i++)
    result_P[i] *= factor / 2;
  resultEntropyTerm *= factor / 2;

  timeMeter.print(LOG_AREA_DENSFROMF, "get_dens_from_fock_full");
  return 0;
}