File: xc_matrix_sparse.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (430 lines) | stat: -rw-r--r-- 15,271 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/*-*-mode: C; c-indentation-style: "bsd"; c-basic-offset: 4; -*-*/

/** @file xc_matrix_sparse.cc

    @brief The sparse XC matrix evaluator.

    @author: Pawel Salek <em>responsible</em>

    (c) Pawel Salek, pawsa@theochem.kth.se.
    2002.04.05

    This module evaluates DFT contribution KS matrix.
*/

#define WITH_PTHREAD 1
#if defined(WITH_PTHREAD)
#include <pthread.h>
static pthread_mutex_t dft_prop_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t dft_hicu_grid_init_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif

#include "aos.h"
#include "integrator.h"
#include "sparse_matrix.h"
#include "xc_matrix_sparse.h"
#include "dft_common.h"
#include "grid_reader.h"
#include "output.h"
#include "utilities.h"
#include "xc_evaluators.h"

/* FIXME: remove this dependency */
#include "grid_hicu.h"

/* restrict hints should not be necessary... */
#if !defined(restrict)
#define restrict
#endif

BEGIN_NAMESPACE(Dft)


class XCEvaluator {
protected:
    const BasisInfoStruct& bisOrig;
    const IntegralInfo& integralInfo;
    const Molecule& mol;
    const Dft::GridParams& gss;
    std::vector<int> const & permutationHML;
    int* aoMap;
    BasisInfoStruct* bisPermuted;
    Dft::SparsePattern* pattern;
public:
    XCEvaluator(const BasisInfoStruct& bisOrig_,
                const IntegralInfo& integralInfo_,
                const Molecule& mol_,
                const Dft::GridParams& gss_,
                std::vector<int> const & permutationHML_,
                const symmMatrix& dens);
    ~XCEvaluator();
};

XCEvaluator::XCEvaluator(const BasisInfoStruct& bisOrig_,
                         const IntegralInfo& integralInfo_,
                         const Molecule& mol_,
                         const Dft::GridParams& gss_,
                         std::vector<int> const & permutationHML_,
                         const symmMatrix& dens)
    : bisOrig(bisOrig_), integralInfo(integralInfo_),
      mol(mol_), gss(gss_), permutationHML(permutationHML_),
      aoMap(new int[bisOrig.noOfBasisFuncs])
{
    /* We need to create our own permutation of shells. The
       permutation used in the matrix library permutes basis functions
       even in the middle of the basis function shell, breaking in
       this way simple mapping between shells and basis function
       blocks. We therefore generate here own permutation of
       shells. This is used to create own BasisInfoStruct used
       throughout. The final conversion from own format to the "Common
       Matrix Format" is done at the final assignment phase: the basis
       function indices are permuted with the inverse
       transformation. */

    int *shellMap = new int[bisOrig.noOfShells];

    Dft::setupShellMap(bisOrig, shellMap, aoMap);
    bisPermuted = bisOrig.permuteShells(shellMap, integralInfo);
    delete []shellMap;

    
    /* Force grid creation so that the sparse pattern is
       available... Maybe it is getSparsePattern's problem. */
    ErgoMolInfo molInfo(*bisPermuted, mol);
    pattern = new SparsePattern(*bisPermuted);

    /* When using HiCu grid generation we need a sparse density
       matrix. In order to create a sparse density matrix we need a
       SparsePattern. However, this is only needed when grid file does
       not exist, and only for the HiCu case. */
    SparseMatrix* dMatForGridGen = NULL;
    /* Use mutex lock here to make sure only one thread does this
       (there is anyway threading inside the HiCu code). */
    pthread_mutex_lock(&dft_hicu_grid_init_mutex);
    if(!grid_is_ready() && gss.gridType == Dft::GridParams::TYPE_HICU) {
      Dft::SparsePattern patternTmp(*bisPermuted);
      /* Generate sparse pattern. */
      grid_generate_sparse_pattern(*bisPermuted, gss.hicuParams.maxError, 
				   gss.hicuParams.box_size, gss.hicuParams.start_box_size_debug, patternTmp);
      /* Create dMat already here so it can be used by HiCu grid generator! */
      dMatForGridGen = new SparseMatrix(patternTmp, dens, aoMap, permutationHML);
    }
    else {
      // We do not really need a sparse density matrix in this case; we just create a dummy.
      Dft::SparsePattern patternTmp(*bisPermuted);
      dMatForGridGen = new SparseMatrix(patternTmp);
    }
    pthread_mutex_unlock(&dft_hicu_grid_init_mutex);

    do_output(LOG_CAT_INFO, LOG_AREA_DFT, "getXC calling grid_open_full().");
    Dft::Matrix *mat = createGridMatrix(*dMatForGridGen);
    DftGridReader* rawgrid = grid_open_full(&molInfo, gss, pattern, 
                                            mat, *bisPermuted);
    delete mat;
    delete dMatForGridGen;

    grid_close(rawgrid);    
}

XCEvaluator::~XCEvaluator()
{
    delete bisPermuted;
    delete pattern;
    delete []aoMap;
}

class XCEvaluatorRestricted : public XCEvaluator {
  SparseMatrix *densityMatrix;
public:
  XCEvaluatorRestricted(const BasisInfoStruct& bisOrig_,
                        const IntegralInfo& integralInfo_,
                        const Molecule& mol_,
                        const Dft::GridParams& gss_,
                        std::vector<int> const & permutationHML_,
                        const symmMatrix& density)
    : XCEvaluator(bisOrig_, integralInfo_, mol_, gss_, permutationHML_,
                  density),
      densityMatrix(NULL)
  {
    densityMatrix = new SparseMatrix(*pattern, density, aoMap, permutationHML);
  }
  ~XCEvaluatorRestricted()
  {
    delete densityMatrix;
  }
      
  real getXC(int nElectrons, symmMatrix& xcm, real* xcEnergy,
             int nThreads) const;
};

/** Computes Fock matrix xcm corresponding to given density matrix dmat.
   fast version - uses memory bandwidth-efficient algorithm.
*/
real
XCEvaluatorRestricted::getXC(int nElectrons, symmMatrix& xcm,
                             real* xcEnergy, int nThreads) const
{
    real electrons;
    Util::TimeMeter tm;

    *xcEnergy = 0;
    sync_threads(false, nThreads);
    SparseMatrix excmat(*pattern);

    KsData<Dft::SparseMatrix> ds(&excmat, DFT_MAX_BLLEN);

    void (*cblda)(DftIntegratorBl* grid, real * restrict tmp, 
                  int bllen, int blstart, int blend,
                  KsData<Dft::SparseMatrix>* data)
      = xcCallbackLdaR<Dft::SparseMatrix,XCDistributorLda<Dft::SparseMatrix> >;
    void (*cbgga)(DftIntegratorBl* grid, real * restrict tmp, 
                  int bllen, int blstart, int blend,
                  KsData<Dft::SparseMatrix>* data)
      = xcCallbackGgaR<Dft::SparseMatrix,XCDistributorGga<Dft::SparseMatrix> >;

    electrons = integrate(1, &densityMatrix, *bisPermuted, mol, gss, nThreads,
                          (DftBlockCallback)
                          (selected_func->is_gga() ? cbgga : cblda),
                          &ds);

    pthread_mutex_lock(&dft_prop_mutex);
    *xcEnergy +=ds.energy;
    excmat.addSymmetrizedTo(xcm, aoMap, permutationHML);
    pthread_mutex_unlock(&dft_prop_mutex);


    if(nThreads<=1) {
        do_output(LOG_CAT_INFO, LOG_AREA_DFT, 
                  "Electrons: %11.7f %7.1g: xc energy %f (serial)", 
                  (double)electrons,
                  (double)((electrons-nElectrons)/nElectrons), 
                  (double)ds.energy);
        tm.print(LOG_AREA_DFT, __func__);
    }
    return electrons;
}

struct XcData {
    const XCEvaluatorRestricted* xcEvaluator;
    int nElectrons;
    symmMatrix* xcm;
    real xcEnergy;
    real el;
    int nThreads;
};

static void*
xcWorker(void *data)
{
  static const int XCWORKER_ERROR =0;
  struct XcData *d = (XcData*)data;
  try {
      d->el = d->xcEvaluator->getXC(d->nElectrons, *d->xcm, &d->xcEnergy,
                                    d->nThreads);
  } catch(const char *s) {
    do_output(LOG_CAT_ERROR, LOG_AREA_DFT, 
              "xcWorker thread caught an exception '%s'", s);
    return (void*)&XCWORKER_ERROR;
  } catch(const std::bad_alloc & e) {
    do_output(LOG_CAT_ERROR, LOG_AREA_DFT, 
              "xcWorker thread caught an exception '%s'", e.what());
    return (void*)&XCWORKER_ERROR;
  } catch(const std::runtime_error & e) {
    do_output(LOG_CAT_ERROR, LOG_AREA_DFT, 
              "xcWorker thread caught an exception '%s'", e.what());
    return (void*)&XCWORKER_ERROR;
  }  catch(...) {
    do_output(LOG_CAT_ERROR, LOG_AREA_DFT, 
              "xcWorker thread caught unexpected exception.");
    return (void*)&XCWORKER_ERROR;
  }
  return NULL;
}

real
getXC_mt(const BasisInfoStruct& bis, const IntegralInfo& integralInfo,
         const Molecule& mol, const Dft::GridParams& gss, int nElectrons,
         const symmMatrix& dens, symmMatrix& xcm, real* xcEnergy,
         std::vector<int> const & permutationHML)
{
    int i;
    real electrons;
    Util::TimeMeter tm;
    
    int nThreads = dft_get_num_threads();
    std::vector<XcData> data(nThreads);
    std::vector<pthread_t> pids(nThreads);

    XCEvaluatorRestricted xcEvaluator(bis, integralInfo, mol, gss,
                                      permutationHML, dens);

    if(nThreads == 1) {
        /* Do not create any threads at all to avoid stack allocation. */
        *xcEnergy = 0.0;
        electrons = xcEvaluator.getXC(nElectrons, xcm, xcEnergy, 1);
    } else {
        for(i=0; i<nThreads; i++) {
            data[i].xcEvaluator = &xcEvaluator;
            data[i].nElectrons = nElectrons;
            data[i].xcm   = &xcm;
            data[i].xcEnergy = 0.0;
            data[i].nThreads = nThreads;
            if(pthread_create(&pids[i], NULL, xcWorker, &data[i])) {
              do_output(LOG_CAT_ERROR, LOG_AREA_DFT, 
                        "Creation of thread # %d failed\n", i);
              if (i==0)
                throw "No worker threads could be started";
              else 
                break;
            }
        }
        *xcEnergy = 0;
        electrons = 0;
        while (--i >= 0) {
            pthread_join(pids[i], NULL);
            *xcEnergy += data[i].xcEnergy;
            electrons += data[i].el;
        }
    }
    if(nThreads>1) {
        do_output(LOG_CAT_INFO, LOG_AREA_DFT, 
                  "Electrons: %11.7f %7.1g: KS Energy %f (mt)", 
                  (double)electrons,
                  (double)((electrons-nElectrons)/nElectrons), 
                  (double)*xcEnergy);
        tm.print(LOG_AREA_DFT, __func__);
    }
    return electrons;
}

real
getXC_seq(const BasisInfoStruct& bis, const IntegralInfo& integralInfo,
          const Molecule& mol, const Dft::GridParams& gss, int nElectrons,
          const symmMatrix& dens, symmMatrix& xcm, real* xcEnergy,
          std::vector<int> const & permutationHML)
{
  XCEvaluatorRestricted xcEvr(bis, integralInfo, mol, gss,
                              permutationHML, dens);
  printf("%p\n", (void*)(&xcEvr));
  return xcEvr.getXC(nElectrons, xcm, xcEnergy, 1);
}

/* =================================================================== */
/* Unrestricted sparse code. */
class XCEvaluatorUnrestricted : public XCEvaluator {
  SparseMatrix *dMat[2];
public:
  XCEvaluatorUnrestricted(const BasisInfoStruct& bisOrig_,
                          const IntegralInfo& integralInfo_,
                          const Molecule& mol_,
                          const Dft::GridParams& gss_,
                          std::vector<int> const & permutationHML_,
                          const symmMatrix& densA,
                          const symmMatrix& densB)
    : XCEvaluator(bisOrig_, integralInfo_, mol_, gss_, permutationHML_, densA)
  {
    dMat[0] = new SparseMatrix(*pattern, densA, aoMap, permutationHML);
    dMat[1] = new SparseMatrix(*pattern, densB, aoMap, permutationHML);
  }
  ~XCEvaluatorUnrestricted()
  {
    delete dMat[0];
    delete dMat[1];
  }

  real getXC(int nElectrons, symmMatrix& xcA, symmMatrix& xcB,
             real* xcEnergy, int nThreads) const;
};

real
XCEvaluatorUnrestricted::getXC(int nElectrons,
                               symmMatrix& xca, symmMatrix& xcb,
                               real* xcEnergy, int nThreads) const
{
    real electrons;

    Util::TimeMeter tm;
    bool isGGA = selected_func->is_gga();

    *xcEnergy = 0.0;
    sync_threads(false, nThreads);
    SparseMatrix mata(*pattern), matb(*pattern);
    struct UksData<Dft::SparseMatrix> ds(&mata, &matb, DFT_MAX_BLLEN);

    void (*cblda)(DftIntegratorBl* grid, real * restrict tmp, 
                  int bllen, int blstart, int blend,
                  UksData<SparseMatrix>* data)
      = xcCallbackLdaU<SparseMatrix,XCDistributorLda<SparseMatrix> >;
    void (*cbgga)(DftIntegratorBl* grid, real * restrict tmp, 
                  int bllen, int blstart, int blend,
                  UksData<SparseMatrix>* data)
      = xcCallbackGgaU<SparseMatrix,XCDistributorGgaU<SparseMatrix> >;

    electrons = integrate(2, dMat, *bisPermuted, mol, gss,
                          nThreads,
                          DftBlockCallback(isGGA ? cbgga : cblda),
                          &ds);
    
    pthread_mutex_lock(&dft_prop_mutex);
    *xcEnergy +=ds.energy;
    pthread_mutex_unlock(&dft_prop_mutex);
    mata.addSymmetrizedTo(xca, aoMap, permutationHML);
    matb.addSymmetrizedTo(xcb, aoMap, permutationHML);
    pthread_mutex_unlock(&dft_prop_mutex);

    if(nThreads <= 1) {
      do_output(LOG_CAT_INFO, LOG_AREA_DFT,
                "Electrons: %11.7f %7.1g:  U-xc energy %f (serial)",
                (double)electrons,
                (double)((electrons-nElectrons)/nElectrons), 
                (double)ds.energy);
      tm.print(LOG_AREA_DFT, __func__);
    }
    return electrons;
}

/* multithreaded interface TBW... */

real
getUXC_seq(const BasisInfoStruct& bis, const IntegralInfo& integralInfo,
          const Molecule& mol, const Dft::GridParams& gss, int nElectrons,
          const symmMatrix& densA, const symmMatrix& densB,
          symmMatrix& xcA, symmMatrix& xcB, real* xcEnergy,
          std::vector<int> const & permutationHML)
{
    XCEvaluatorUnrestricted xcEvaluator(bis, integralInfo, mol, gss,
                                        permutationHML, densA, densB);
    return xcEvaluator.getXC(nElectrons, xcA, xcB, xcEnergy, 1);
}


END_NAMESPACE(Dft)