File: integrals_1el_single.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (201 lines) | stat: -rw-r--r-- 6,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file integrals_1el_single.cc

    @brief Functionality for computing a single 1-electron integral,
    for a given primitive Gaussian distribution and a given point
    charge.

    @author: Elias Rudberg <em>responsible</em>
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include "integrals_1el_single.h"
#include "pi.h"
#include "boysfunction.h"

#include "integrals_hermite.h"


static ergo_real
do_1e_repulsion_integral_using_symb_info_h(const DistributionSpecStruct & psi,
					   ergo_real pointCharge,
					   const ergo_real* pointChargeCoords,
					   const IntegralInfo & integralInfo)
{
  // Let the distr be 1 and the pointcharge 2
  ergo_real alpha1 = psi.exponent;
  // alpha2 is ~ infinity
  ergo_real alpha0 = alpha1;
  // alpham is ~ infinity
  // g is 1 (not needed)
  
  int n1 = 0;
  int n2 = 0;
  for(int i = 0; i < 3; i++)
    n1 += psi.monomialInts[i];
  int n1x = psi.monomialInts[0];
  int n1y = psi.monomialInts[1];
  int n1z = psi.monomialInts[2];

  int noOfMonomials_1 = integralInfo.monomial_info.no_of_monomials_list[n1];
  int noOfMonomials_2 = integralInfo.monomial_info.no_of_monomials_list[n2];

  ergo_real dx0 = pointChargeCoords[0] - psi.centerCoords[0];
  ergo_real dx1 = pointChargeCoords[1] - psi.centerCoords[1];
  ergo_real dx2 = pointChargeCoords[2] - psi.centerCoords[2];

  ergo_real resultPreFactor = 2 * pi / alpha1;

  ergo_real primitiveIntegralList_h[noOfMonomials_1*noOfMonomials_2];
  ergo_real primitiveIntegralList_2[noOfMonomials_1*noOfMonomials_2];

  const JK::ExchWeights CAM_params_not_used;
  
  get_related_integrals_hermite(integralInfo,
				CAM_params_not_used,
				n1, noOfMonomials_1,
				n2, noOfMonomials_2,
				dx0, 
				dx1, 
				dx2, 
				alpha0,
				resultPreFactor,
				primitiveIntegralList_h);
  
  integralInfo.multiply_by_hermite_conversion_matrix_from_right(n1,
								n2,
								1.0/alpha1,
								primitiveIntegralList_h,
								primitiveIntegralList_2);
  int monomialIndex = integralInfo.monomial_info.monomial_index_list[n1x][n1y][n1z];

  ergo_real result = psi.coeff * pointCharge * primitiveIntegralList_2[monomialIndex];

  return result;
}


/* This routine is supposed to compute derivatives of integrals w.r.t. changes in the pointCharge coordinates.  */
std::vector<ergo_real> do_1e_repulsion_integral_derivatives_using_symb_info(const DistributionSpecStruct* psi,
									    ergo_real pointCharge,
									    const ergo_real* pointChargeCoords,
									    const IntegralInfo & integralInfo) {
  // Let the distr be 1 and the pointcharge 2
  ergo_real alpha1 = psi->exponent;
  // alpha2 is ~ infinity
  ergo_real alpha0 = alpha1;
  // alpham is ~ infinity
  // g is 1 (not needed)
  
  int n1 = 0;
  int n2 = 1;
  for(int i = 0; i < 3; i++)
    n1 += psi->monomialInts[i];
  int n1x = psi->monomialInts[0];
  int n1y = psi->monomialInts[1];
  int n1z = psi->monomialInts[2];

  int noOfMonomials_1 = integralInfo.monomial_info.no_of_monomials_list[n1];
  int noOfMonomials_2 = integralInfo.monomial_info.no_of_monomials_list[n2];

  ergo_real dx0 = pointChargeCoords[0] - psi->centerCoords[0];
  ergo_real dx1 = pointChargeCoords[1] - psi->centerCoords[1];
  ergo_real dx2 = pointChargeCoords[2] - psi->centerCoords[2];

  ergo_real resultPreFactor = 2 * pi / alpha1;

  ergo_real primitiveIntegralList_h[noOfMonomials_1*noOfMonomials_2];

  const JK::ExchWeights CAM_params_not_used;
  
  get_related_integrals_hermite(integralInfo,
				CAM_params_not_used,
				n1, noOfMonomials_1,
				n2, noOfMonomials_2,
				dx0, 
				dx1, 
				dx2, 
				alpha0,
				resultPreFactor,
				primitiveIntegralList_h);

  int n1b = n1;
  int n2b = 0;
  ergo_real primitiveIntegralList_h_components[3][noOfMonomials_1];
  int monomialIndex_x = integralInfo.monomial_info.monomial_index_list[1][0][0];
  int monomialIndex_y = integralInfo.monomial_info.monomial_index_list[0][1][0];
  int monomialIndex_z = integralInfo.monomial_info.monomial_index_list[0][0][1];
  for(int i = 0; i < noOfMonomials_1; i++) {
    primitiveIntegralList_h_components[0][i] = primitiveIntegralList_h[i*noOfMonomials_2+monomialIndex_x];
    primitiveIntegralList_h_components[1][i] = primitiveIntegralList_h[i*noOfMonomials_2+monomialIndex_y];
    primitiveIntegralList_h_components[2][i] = primitiveIntegralList_h[i*noOfMonomials_2+monomialIndex_z];
  }
  ergo_real primitiveIntegralList_2_components[3][noOfMonomials_1];
  for(int i = 0; i < 3; i++)
    integralInfo.multiply_by_hermite_conversion_matrix_from_right(n1b, n2b, 1.0/alpha1, primitiveIntegralList_h_components[i], primitiveIntegralList_2_components[i]);

  int monomialIndex = integralInfo.monomial_info.monomial_index_list[n1x][n1y][n1z];

  ergo_real result_x = psi->coeff * pointCharge * primitiveIntegralList_2_components[0][monomialIndex];
  ergo_real result_y = psi->coeff * pointCharge * primitiveIntegralList_2_components[1][monomialIndex];
  ergo_real result_z = psi->coeff * pointCharge * primitiveIntegralList_2_components[2][monomialIndex];

  std::vector<ergo_real> v(3);
  v[0] = result_x;
  v[1] = result_y;
  v[2] = result_z;
  return v;
}





ergo_real 
do_1e_repulsion_integral_using_symb_info(const DistributionSpecStruct & psi,
					 ergo_real pointCharge,
					 const ergo_real* pointChargeCoords,
					 const IntegralInfo & integralInfo)
{
  return do_1e_repulsion_integral_using_symb_info_h(psi,
						    pointCharge,
						    pointChargeCoords,
						    integralInfo);
}