1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_repeating.cc
@brief Functionality for keeping track of certain kinds of
integrals that are computed repeatedly, saving the computed values
instead of recomputing them.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include <assert.h>
#include "pi.h"
#include "integrals_hermite.h"
#include "integrals_2el_repeating.h"
#include "realtype.h"
IntegratorCase::IntegratorCase(int Nmax_in,
int noOfMonomials,
ergo_real exponent_in,
const ergo_real* newList)
{
list = new ergo_real[noOfMonomials];
Nmax = Nmax_in;
exponent = exponent_in;
for(int i = 0; i < noOfMonomials; i++)
list[i] = newList[i];
}
IntegratorCase::~IntegratorCase()
{
delete []list;
}
typedef IntegratorCase* IntegratorCasePtr;
const int MAX_NO_OF_CASES = 44444;
IntegratorWithMemory::IntegratorWithMemory(const IntegralInfo* b)
{
integralInfo = b;
noOfCases = 0;
caseList = new IntegratorCasePtr[MAX_NO_OF_CASES];
}
IntegratorWithMemory::~IntegratorWithMemory()
{
for(int i = 0; i < noOfCases; i++)
delete caseList[i];
delete []caseList;
}
ergo_real
IntegratorWithMemory::do_2e_integral(const DistributionSpecStruct* psi)
{
const ergo_real twoTimesPiToPow5half = 2 * pitopow52;
int Ntot;
ergo_real alpha1 = psi->exponent;
ergo_real alpha2 = psi->exponent;
ergo_real alphasum = alpha1 + alpha2;
ergo_real alphaproduct = alpha1 * alpha2;
ergo_real alpha0 = alphaproduct / alphasum;
int n1 = 0;
int n2 = 0;
for(int i = 0; i < 3; i++)
{
n1 += psi->monomialInts[i];
n2 += psi->monomialInts[i];
}
int nx = psi->monomialInts[0];
int ny = psi->monomialInts[1];
int nz = psi->monomialInts[2];
Ntot = n1 + n2;
int Nmax = Ntot;
int noOfMonomials = integralInfo->monomial_info.no_of_monomials_list[n1];
ergo_real dx0 = 0;
ergo_real dx1 = 0;
ergo_real dx2 = 0;
ergo_real resultPreFactor = twoTimesPiToPow5half / (alphaproduct*template_blas_sqrt(alphasum));
int monomialIndex = integralInfo->monomial_info.monomial_index_list[nx][ny][nz];
// Check if this type of integral is already known
// That is, have we already calculated integrals for this Nmax (or higher Nmax) and for this exponent?
int foundIndex = -1;
if(noOfCases > 0)
{
int lo = 0;
int hi = noOfCases - 1;
while(lo < hi-1)
{
int mid = (lo + hi) / 2;
if(caseList[mid]->exponent < alpha0)
lo = mid;
else
hi = mid;
} // END WHILE
const ergo_real exponent_diff_limit = 1e-11; // FIXME: SHOULD NOT USE HARD-CODED VALUE HERE!
ergo_real exponentDiff1 = template_blas_fabs(caseList[lo]->exponent - alpha0);
if(exponentDiff1 < exponent_diff_limit)
foundIndex = lo;
ergo_real exponentDiff2 = template_blas_fabs(caseList[hi]->exponent - alpha0);
if(exponentDiff2 < exponent_diff_limit)
foundIndex = hi;
}
if(foundIndex >= 0)
{
if(caseList[foundIndex]->Nmax >= Nmax)
{
// OK, found it!
return resultPreFactor * psi->coeff * psi->coeff * caseList[foundIndex]->list[monomialIndex];
}
}
// No, not found. Create new case.
ergo_real primitiveIntegralList_h[noOfMonomials*noOfMonomials];
ergo_real primitiveIntegralList_tmp[noOfMonomials*noOfMonomials];
ergo_real primitiveIntegralList[noOfMonomials*noOfMonomials];
const JK::ExchWeights CAM_params_not_used;
get_related_integrals_hermite(*integralInfo,
CAM_params_not_used,
n1, noOfMonomials,
n2, noOfMonomials,
dx0,
dx1,
dx2,
alpha0,
1.0,
primitiveIntegralList_h);
integralInfo->multiply_by_hermite_conversion_matrix_from_right(n1,
n2,
1.0/alpha1,
primitiveIntegralList_h,
primitiveIntegralList_tmp);
integralInfo->multiply_by_hermite_conversion_matrix_from_left(n1,
n2,
1.0/alpha2,
primitiveIntegralList_tmp,
primitiveIntegralList);
ergo_real newList[noOfMonomials];
for(int i = 0; i < noOfMonomials; i++)
newList[i] = primitiveIntegralList[i*noOfMonomials+i];
assert(noOfCases < MAX_NO_OF_CASES);
IntegratorCase* newCase = new IntegratorCase(Nmax, noOfMonomials, alpha0, newList);
// Check if this exponent is already present in list. If so, replace it with this new higher Nmax.
if(foundIndex >= 0)
{
delete caseList[foundIndex];
caseList[foundIndex] = newCase;
}
else
{
// Insert new entry at proper place in list.
// First skip all entries with too small exponent.
int nSkipped = 0;
for(int i = 0; i < noOfCases; i++)
{
if(caseList[i]->exponent < alpha0)
nSkipped++;
else
break;
} // END FOR i
int newIndex = nSkipped;
// Now move all remaining entries one step down in list.
for(int i = noOfCases-1; i >= nSkipped; i--)
caseList[i+1] = caseList[i];
// Now add new entry.
caseList[newIndex] = newCase;
noOfCases++;
}
// We have now modified the list so that the needed case is present. Call this function again.
return do_2e_integral(psi);
}
|