File: integrals_2el_repeating.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (228 lines) | stat: -rw-r--r-- 6,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file integrals_2el_repeating.cc

    @brief Functionality for keeping track of certain kinds of
    integrals that are computed repeatedly, saving the computed values
    instead of recomputing them.

    @author: Elias Rudberg <em>responsible</em>
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include <assert.h>
#include "pi.h"
#include "integrals_hermite.h"
#include "integrals_2el_repeating.h"
#include "realtype.h"


IntegratorCase::IntegratorCase(int Nmax_in, 
			       int noOfMonomials, 
			       ergo_real exponent_in, 
			       const ergo_real* newList)
{
  list = new ergo_real[noOfMonomials];
  Nmax = Nmax_in;
  exponent = exponent_in;
  for(int i = 0; i < noOfMonomials; i++)
    list[i] = newList[i];
}

IntegratorCase::~IntegratorCase()
{
  delete []list;
}


typedef IntegratorCase* IntegratorCasePtr;

const int MAX_NO_OF_CASES = 44444;

IntegratorWithMemory::IntegratorWithMemory(const IntegralInfo* b)
{
  integralInfo = b;
  noOfCases = 0;
  caseList = new IntegratorCasePtr[MAX_NO_OF_CASES];
}

IntegratorWithMemory::~IntegratorWithMemory()
{
  for(int i = 0; i < noOfCases; i++)
    delete caseList[i];
  delete []caseList;
}

ergo_real
IntegratorWithMemory::do_2e_integral(const DistributionSpecStruct* psi)
{
  const ergo_real twoTimesPiToPow5half = 2 * pitopow52;
  int Ntot;
  ergo_real alpha1 = psi->exponent;
  ergo_real alpha2 = psi->exponent;
  ergo_real alphasum = alpha1 + alpha2;
  ergo_real alphaproduct = alpha1 * alpha2;
  ergo_real alpha0 = alphaproduct / alphasum;
  
  int n1 = 0;
  int n2 = 0;
  for(int i = 0; i < 3; i++)
    {
      n1 += psi->monomialInts[i];
      n2 += psi->monomialInts[i];
    }
  int nx = psi->monomialInts[0];
  int ny = psi->monomialInts[1];
  int nz = psi->monomialInts[2];

  Ntot = n1 + n2;
  int Nmax = Ntot;

  int noOfMonomials = integralInfo->monomial_info.no_of_monomials_list[n1];

  ergo_real dx0 = 0;
  ergo_real dx1 = 0;
  ergo_real dx2 = 0;

  ergo_real resultPreFactor = twoTimesPiToPow5half / (alphaproduct*template_blas_sqrt(alphasum));

  int monomialIndex = integralInfo->monomial_info.monomial_index_list[nx][ny][nz];  

  // Check if this type of integral is already known
  // That is, have we already calculated integrals for this Nmax (or higher Nmax) and for this exponent?
  int foundIndex = -1;
  if(noOfCases > 0)
    {
      int lo = 0;
      int hi = noOfCases - 1;
      while(lo < hi-1)
	{
	  int mid = (lo + hi) / 2;
	  if(caseList[mid]->exponent < alpha0)
	    lo = mid;
	  else
	    hi = mid;
	} // END WHILE
      const ergo_real exponent_diff_limit = 1e-11; // FIXME: SHOULD NOT USE HARD-CODED VALUE HERE!
      ergo_real exponentDiff1 = template_blas_fabs(caseList[lo]->exponent - alpha0);
      if(exponentDiff1 < exponent_diff_limit)
	foundIndex = lo;
      ergo_real exponentDiff2 = template_blas_fabs(caseList[hi]->exponent - alpha0);
      if(exponentDiff2 < exponent_diff_limit)
	foundIndex = hi;
    }
  if(foundIndex >= 0)
    {
      if(caseList[foundIndex]->Nmax >= Nmax)
	{
	  // OK, found it!
	  return resultPreFactor * psi->coeff * psi->coeff * caseList[foundIndex]->list[monomialIndex];
	}
    }


  // No, not found. Create new case.

  ergo_real primitiveIntegralList_h[noOfMonomials*noOfMonomials];
  ergo_real primitiveIntegralList_tmp[noOfMonomials*noOfMonomials];
  ergo_real primitiveIntegralList[noOfMonomials*noOfMonomials];

  const JK::ExchWeights CAM_params_not_used;
  
  get_related_integrals_hermite(*integralInfo,
				CAM_params_not_used,
				n1, noOfMonomials,
				n2, noOfMonomials,
				dx0, 
				dx1, 
				dx2, 
				alpha0,
				1.0,
				primitiveIntegralList_h);

  integralInfo->multiply_by_hermite_conversion_matrix_from_right(n1,
								 n2,
								 1.0/alpha1,
								 primitiveIntegralList_h,
								 primitiveIntegralList_tmp);

  integralInfo->multiply_by_hermite_conversion_matrix_from_left(n1,
								n2,
								1.0/alpha2,
								primitiveIntegralList_tmp,
								primitiveIntegralList);

  ergo_real newList[noOfMonomials];
  for(int i = 0; i < noOfMonomials; i++)
    newList[i] = primitiveIntegralList[i*noOfMonomials+i];
  
  assert(noOfCases < MAX_NO_OF_CASES);


  IntegratorCase* newCase = new IntegratorCase(Nmax, noOfMonomials, alpha0, newList);

  // Check if this exponent is already present in list. If so, replace it with this new higher Nmax.
  if(foundIndex >= 0)
    {
      delete caseList[foundIndex];
      caseList[foundIndex] = newCase;
    }
  else
    {
      // Insert new entry at proper place in list.
      // First skip all entries with too small exponent.
      int nSkipped = 0;
      for(int i = 0; i < noOfCases; i++)
	{
	  if(caseList[i]->exponent < alpha0)
	    nSkipped++;
	  else
	    break;
	} // END FOR i 
      int newIndex = nSkipped;
      // Now move all remaining entries one step down in list.
      for(int i = noOfCases-1; i >= nSkipped; i--)
	caseList[i+1] = caseList[i];
      // Now add new entry.
      caseList[newIndex] = newCase;
      noOfCases++;
    }

  // We have now modified the list so that the needed case is present. Call this function again.
  return do_2e_integral(psi);
}