File: integrals_2el_single.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (132 lines) | stat: -rw-r--r-- 4,341 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file integrals_2el_single.cc

    @brief Functionality for computing a single 2-electron integral,
    for two given primitive Gaussian distributions.

    @author: Elias Rudberg <em>responsible</em>
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include "integrals_2el_single.h"
#include "pi.h"
#include "boysfunction.h"

#include "integrals_hermite.h"


static ergo_real
do_2e_integral_using_symb_info_h(const JK::ExchWeights & CAM_params,
				 const DistributionSpecStruct* psi1,
				 const DistributionSpecStruct* psi2,
				 const IntegralInfo & integralInfo)
{
  const ergo_real twoTimesPiToPow5half = 2 * std::pow(pi, 2.5);
  ergo_real alpha1 = psi1->exponent;
  ergo_real alpha2 = psi2->exponent;
  ergo_real alphasum = alpha1 + alpha2;
  ergo_real alphaproduct = alpha1 * alpha2;
  ergo_real alpha0 = alphaproduct / alphasum;
  
  int n1 = 0;
  int n2 = 0;
  for(int i = 0; i < 3; i++)
    {
      n1 += psi1->monomialInts[i];
      n2 += psi2->monomialInts[i];
    }
  int n1x = psi1->monomialInts[0];
  int n1y = psi1->monomialInts[1];
  int n1z = psi1->monomialInts[2];
  int n2x = psi2->monomialInts[0];
  int n2y = psi2->monomialInts[1];
  int n2z = psi2->monomialInts[2];

  int noOfMonomials_1 = integralInfo.monomial_info.no_of_monomials_list[n1];
  int noOfMonomials_2 = integralInfo.monomial_info.no_of_monomials_list[n2];
  
  ergo_real dx0 = psi2->centerCoords[0] - psi1->centerCoords[0];
  ergo_real dx1 = psi2->centerCoords[1] - psi1->centerCoords[1];
  ergo_real dx2 = psi2->centerCoords[2] - psi1->centerCoords[2];

  ergo_real resultPreFactor = twoTimesPiToPow5half / (alphaproduct*template_blas_sqrt(alphasum));

  ergo_real primitiveIntegralList_h[noOfMonomials_1*noOfMonomials_2];
  ergo_real primitiveIntegralList_tmp[noOfMonomials_1*noOfMonomials_2];
  ergo_real primitiveIntegralList[noOfMonomials_1*noOfMonomials_2];
  
  get_related_integrals_hermite(integralInfo,
				CAM_params,
				n1, noOfMonomials_1,
				n2, noOfMonomials_2,
				dx0, 
				dx1, 
				dx2, 
				alpha0,
				resultPreFactor,
				primitiveIntegralList_h);

  integralInfo.multiply_by_hermite_conversion_matrix_from_right(n1,
								n2,
								1.0/alpha1,
								primitiveIntegralList_h,
								primitiveIntegralList_tmp);

  integralInfo.multiply_by_hermite_conversion_matrix_from_left(n1,
							       n2,
							       1.0/alpha2,
							       primitiveIntegralList_tmp,
							       primitiveIntegralList);

  int monomialIndex1 = integralInfo.monomial_info.monomial_index_list[n1x][n1y][n1z];  
  int monomialIndex2 = integralInfo.monomial_info.monomial_index_list[n2x][n2y][n2z];  

  ergo_real result = psi1->coeff * psi2->coeff * primitiveIntegralList[monomialIndex1*noOfMonomials_2+monomialIndex2];
  
  return result;
}


ergo_real
do_2e_integral_using_symb_info(const JK::ExchWeights & CAM_params,
			       const DistributionSpecStruct* psi1,
			       const DistributionSpecStruct* psi2,
			       const IntegralInfo & integralInfo)
{
  return do_2e_integral_using_symb_info_h(CAM_params, psi1, psi2, integralInfo);
}