File: template_blas_gemm.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (349 lines) | stat: -rw-r--r-- 11,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_BLAS_GEMM_HEADER
#define TEMPLATE_BLAS_GEMM_HEADER

#include "template_blas_common.h"

template<class Treal>
int template_blas_gemm(const char *transa, const char *transb, const integer *m, const integer *
	n, const integer *k, const Treal *alpha, const Treal *a, const integer *lda, 
	const Treal *b, const integer *ldb, const Treal *beta, Treal *c__, 
	const integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
	    i__3;
    /* Local variables */
     integer info;
     logical nota, notb;
     Treal temp;
     integer i__, j, l;
     integer nrowa, nrowb;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/*  Purpose   
    =======   
    DGEMM  performs one of the matrix-matrix operations   
       C := alpha*op( A )*op( B ) + beta*C,   
    where  op( X ) is one of   
       op( X ) = X   or   op( X ) = X',   
    alpha and beta are scalars, and A, B and C are matrices, with op( A )   
    an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.   
    Parameters   
    ==========   
    TRANSA - CHARACTER*1.   
             On entry, TRANSA specifies the form of op( A ) to be used in   
             the matrix multiplication as follows:   
                TRANSA = 'N' or 'n',  op( A ) = A.   
                TRANSA = 'T' or 't',  op( A ) = A'.   
                TRANSA = 'C' or 'c',  op( A ) = A'.   
             Unchanged on exit.   
    TRANSB - CHARACTER*1.   
             On entry, TRANSB specifies the form of op( B ) to be used in   
             the matrix multiplication as follows:   
                TRANSB = 'N' or 'n',  op( B ) = B.   
                TRANSB = 'T' or 't',  op( B ) = B'.   
                TRANSB = 'C' or 'c',  op( B ) = B'.   
             Unchanged on exit.   
    M      - INTEGER.   
             On entry,  M  specifies  the number  of rows  of the  matrix   
             op( A )  and of the  matrix  C.  M  must  be at least  zero.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry,  N  specifies the number  of columns of the matrix   
             op( B ) and the number of columns of the matrix C. N must be   
             at least zero.   
             Unchanged on exit.   
    K      - INTEGER.   
             On entry,  K  specifies  the number of columns of the matrix   
             op( A ) and the number of rows of the matrix op( B ). K must   
             be at least  zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is   
             k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.   
             Before entry with  TRANSA = 'N' or 'n',  the leading  m by k   
             part of the array  A  must contain the matrix  A,  otherwise   
             the leading  k by m  part of the array  A  must contain  the   
             matrix A.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in the calling (sub) program. When  TRANSA = 'N' or 'n' then   
             LDA must be at least  max( 1, m ), otherwise  LDA must be at   
             least  max( 1, k ).   
             Unchanged on exit.   
    B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is   
             n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.   
             Before entry with  TRANSB = 'N' or 'n',  the leading  k by n   
             part of the array  B  must contain the matrix  B,  otherwise   
             the leading  n by k  part of the array  B  must contain  the   
             matrix B.   
             Unchanged on exit.   
    LDB    - INTEGER.   
             On entry, LDB specifies the first dimension of B as declared   
             in the calling (sub) program. When  TRANSB = 'N' or 'n' then   
             LDB must be at least  max( 1, k ), otherwise  LDB must be at   
             least  max( 1, n ).   
             Unchanged on exit.   
    BETA   - DOUBLE PRECISION.   
             On entry,  BETA  specifies the scalar  beta.  When  BETA  is   
             supplied as zero then C need not be set on input.   
             Unchanged on exit.   
    C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).   
             Before entry, the leading  m by n  part of the array  C must   
             contain the matrix  C,  except when  beta  is zero, in which   
             case C need not be set on entry.   
             On exit, the array  C  is overwritten by the  m by n  matrix   
             ( alpha*op( A )*op( B ) + beta*C ).   
    LDC    - INTEGER.   
             On entry, LDC specifies the first dimension of C as declared   
             in  the  calling  (sub)  program.   LDC  must  be  at  least   
             max( 1, m ).   
             Unchanged on exit.   
    Level 3 Blas routine.   
    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   
       Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not   
       transposed and set  NROWA, NCOLA and  NROWB  as the number of rows   
       and  columns of  A  and the  number of  rows  of  B  respectively.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    /* Function Body */
    nota = template_blas_lsame(transa, "N");
    notb = template_blas_lsame(transb, "N");
    if (nota) {
	nrowa = *m;
    } else {
	nrowa = *k;
    }
    if (notb) {
	nrowb = *k;
    } else {
	nrowb = *n;
    }
/*     Test the input parameters. */
    info = 0;
    if (! nota && ! template_blas_lsame(transa, "C") && ! template_blas_lsame(
	    transa, "T")) {
	info = 1;
    } else if (! notb && ! template_blas_lsame(transb, "C") && ! 
	    template_blas_lsame(transb, "T")) {
	info = 2;
    } else if (*m < 0) {
	info = 3;
    } else if (*n < 0) {
	info = 4;
    } else if (*k < 0) {
	info = 5;
    } else if (*lda < maxMACRO(1,nrowa)) {
	info = 8;
    } else if (*ldb < maxMACRO(1,nrowb)) {
	info = 10;
    } else if (*ldc < maxMACRO(1,*m)) {
	info = 13;
    }
    if (info != 0) {
	template_blas_erbla("DGEMM ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*m == 0 || *n == 0 || ( (*alpha == 0. || *k == 0) && *beta == 1.) ) {
	return 0;
    }
/*     And if  alpha.eq.zero. */
    if (*alpha == 0.) {
	if (*beta == 0.) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = 0.;
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
		}
/* L40: */
	    }
	}
	return 0;
    }
/*     Start the operations. */
    if (notb) {
	if (nota) {
/*           Form  C := alpha*A*B + beta*C. */
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L50: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L60: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (b_ref(l, j) != 0.) {
			temp = *alpha * b_ref(l, j);
			i__3 = *m;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c___ref(i__, j) = c___ref(i__, j) + temp * a_ref(
				    i__, l);
/* L70: */
			}
		    }
/* L80: */
		}
/* L90: */
	    }
	} else {
/*           Form  C := alpha*A'*B + beta*C */
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a_ref(l, i__) * b_ref(l, j);
/* L100: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = *alpha * temp;
		    } else {
			c___ref(i__, j) = *alpha * temp + *beta * c___ref(i__,
				 j);
		    }
/* L110: */
		}
/* L120: */
	    }
	}
    } else {
	if (nota) {
/*           Form  C := alpha*A*B' + beta*C */
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L130: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L140: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (b_ref(j, l) != 0.) {
			temp = *alpha * b_ref(j, l);
			i__3 = *m;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c___ref(i__, j) = c___ref(i__, j) + temp * a_ref(
				    i__, l);
/* L150: */
			}
		    }
/* L160: */
		}
/* L170: */
	    }
	} else {
/*           Form  C := alpha*A'*B' + beta*C */
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a_ref(l, i__) * b_ref(j, l);
/* L180: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = *alpha * temp;
		    } else {
			c___ref(i__, j) = *alpha * temp + *beta * c___ref(i__,
				 j);
		    }
/* L190: */
		}
/* L200: */
	    }
	}
    }
    return 0;
/*     End of DGEMM . */
} /* dgemm_ */
#undef c___ref
#undef b_ref
#undef a_ref

#endif