File: template_blas_spr.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (219 lines) | stat: -rw-r--r-- 6,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_BLAS_SPR_HEADER
#define TEMPLATE_BLAS_SPR_HEADER

#include "template_blas_common.h"

template<class Treal>
int template_blas_spr(const char *uplo, integer *n, Treal *alpha, 
	Treal *x, integer *incx, Treal *ap)
{
    /* System generated locals */
    integer i__1, i__2;
    /* Local variables */
     integer info;
     Treal temp;
     integer i__, j, k;
     integer kk, ix, jx, kx;
/*  Purpose   
    =======   
    DSPR    performs the symmetric rank 1 operation   
       A := alpha*x*x' + A,   
    where alpha is a real scalar, x is an n element vector and A is an   
    n by n symmetric matrix, supplied in packed form.   
    Parameters   
    ==========   
    UPLO   - CHARACTER*1.   
             On entry, UPLO specifies whether the upper or lower   
             triangular part of the matrix A is supplied in the packed   
             array AP as follows:   
                UPLO = 'U' or 'u'   The upper triangular part of A is   
                                    supplied in AP.   
                UPLO = 'L' or 'l'   The lower triangular part of A is   
                                    supplied in AP.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the order of the matrix A.   
             N must be at least zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    X      - DOUBLE PRECISION array of dimension at least   
             ( 1 + ( n - 1 )*abs( INCX ) ).   
             Before entry, the incremented array X must contain the n   
             element vector x.   
             Unchanged on exit.   
    INCX   - INTEGER.   
             On entry, INCX specifies the increment for the elements of   
             X. INCX must not be zero.   
             Unchanged on exit.   
    AP     - DOUBLE PRECISION array of DIMENSION at least   
             ( ( n*( n + 1 ) )/2 ).   
             Before entry with  UPLO = 'U' or 'u', the array AP must   
             contain the upper triangular part of the symmetric matrix   
             packed sequentially, column by column, so that AP( 1 )   
             contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )   
             and a( 2, 2 ) respectively, and so on. On exit, the array   
             AP is overwritten by the upper triangular part of the   
             updated matrix.   
             Before entry with UPLO = 'L' or 'l', the array AP must   
             contain the lower triangular part of the symmetric matrix   
             packed sequentially, column by column, so that AP( 1 )   
             contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )   
             and a( 3, 1 ) respectively, and so on. On exit, the array   
             AP is overwritten by the lower triangular part of the   
             updated matrix.   
    Level 2 Blas routine.   
    -- Written on 22-October-1986.   
       Jack Dongarra, Argonne National Lab.   
       Jeremy Du Croz, Nag Central Office.   
       Sven Hammarling, Nag Central Office.   
       Richard Hanson, Sandia National Labs.   
       Test the input parameters.   
       Parameter adjustments */
    --ap;
    --x;
    /* Initialization added by Elias to get rid of compiler warnings. */
    kx = 0;
    /* Function Body */
    info = 0;
    if (! template_blas_lsame(uplo, "U") && ! template_blas_lsame(uplo, "L")) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*incx == 0) {
	info = 5;
    }
    if (info != 0) {
	template_blas_erbla("SPR   ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*n == 0 || *alpha == 0.) {
	return 0;
    }
/*     Set the start point in X if the increment is not unity. */
    if (*incx <= 0) {
	kx = 1 - (*n - 1) * *incx;
    } else if (*incx != 1) {
	kx = 1;
    }
/*     Start the operations. In this version the elements of the array AP   
       are accessed sequentially with one pass through AP. */
    kk = 1;
    if (template_blas_lsame(uplo, "U")) {
/*        Form  A  when upper triangle is stored in AP. */
	if (*incx == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[j] != 0.) {
		    temp = *alpha * x[j];
		    k = kk;
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			ap[k] += x[i__] * temp;
			++k;
/* L10: */
		    }
		}
		kk += j;
/* L20: */
	    }
	} else {
	    jx = kx;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    ix = kx;
		    i__2 = kk + j - 1;
		    for (k = kk; k <= i__2; ++k) {
			ap[k] += x[ix] * temp;
			ix += *incx;
/* L30: */
		    }
		}
		jx += *incx;
		kk += j;
/* L40: */
	    }
	}
    } else {
/*        Form  A  when lower triangle is stored in AP. */
	if (*incx == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[j] != 0.) {
		    temp = *alpha * x[j];
		    k = kk;
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			ap[k] += x[i__] * temp;
			++k;
/* L50: */
		    }
		}
		kk = kk + *n - j + 1;
/* L60: */
	    }
	} else {
	    jx = kx;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    ix = jx;
		    i__2 = kk + *n - j;
		    for (k = kk; k <= i__2; ++k) {
			ap[k] += x[ix] * temp;
			ix += *incx;
/* L70: */
		    }
		}
		jx += *incx;
		kk = kk + *n - j + 1;
/* L80: */
	    }
	}
    }
    return 0;
/*     End of DSPR  . */
} /* dspr_ */

#endif