1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_BLAS_SPR_HEADER
#define TEMPLATE_BLAS_SPR_HEADER
#include "template_blas_common.h"
template<class Treal>
int template_blas_spr(const char *uplo, integer *n, Treal *alpha,
Treal *x, integer *incx, Treal *ap)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer info;
Treal temp;
integer i__, j, k;
integer kk, ix, jx, kx;
/* Purpose
=======
DSPR performs the symmetric rank 1 operation
A := alpha*x*x' + A,
where alpha is a real scalar, x is an n element vector and A is an
n by n symmetric matrix, supplied in packed form.
Parameters
==========
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array AP as follows:
UPLO = 'U' or 'u' The upper triangular part of A is
supplied in AP.
UPLO = 'L' or 'l' The lower triangular part of A is
supplied in AP.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
X - DOUBLE PRECISION array of dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
AP - DOUBLE PRECISION array of DIMENSION at least
( ( n*( n + 1 ) )/2 ).
Before entry with UPLO = 'U' or 'u', the array AP must
contain the upper triangular part of the symmetric matrix
packed sequentially, column by column, so that AP( 1 )
contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
and a( 2, 2 ) respectively, and so on. On exit, the array
AP is overwritten by the upper triangular part of the
updated matrix.
Before entry with UPLO = 'L' or 'l', the array AP must
contain the lower triangular part of the symmetric matrix
packed sequentially, column by column, so that AP( 1 )
contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
and a( 3, 1 ) respectively, and so on. On exit, the array
AP is overwritten by the lower triangular part of the
updated matrix.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments */
--ap;
--x;
/* Initialization added by Elias to get rid of compiler warnings. */
kx = 0;
/* Function Body */
info = 0;
if (! template_blas_lsame(uplo, "U") && ! template_blas_lsame(uplo, "L")) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
}
if (info != 0) {
template_blas_erbla("SPR ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || *alpha == 0.) {
return 0;
}
/* Set the start point in X if the increment is not unity. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of the array AP
are accessed sequentially with one pass through AP. */
kk = 1;
if (template_blas_lsame(uplo, "U")) {
/* Form A when upper triangle is stored in AP. */
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.) {
temp = *alpha * x[j];
k = kk;
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
ap[k] += x[i__] * temp;
++k;
/* L10: */
}
}
kk += j;
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.) {
temp = *alpha * x[jx];
ix = kx;
i__2 = kk + j - 1;
for (k = kk; k <= i__2; ++k) {
ap[k] += x[ix] * temp;
ix += *incx;
/* L30: */
}
}
jx += *incx;
kk += j;
/* L40: */
}
}
} else {
/* Form A when lower triangle is stored in AP. */
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.) {
temp = *alpha * x[j];
k = kk;
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
ap[k] += x[i__] * temp;
++k;
/* L50: */
}
}
kk = kk + *n - j + 1;
/* L60: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.) {
temp = *alpha * x[jx];
ix = jx;
i__2 = kk + *n - j;
for (k = kk; k <= i__2; ++k) {
ap[k] += x[ix] * temp;
ix += *incx;
/* L70: */
}
}
jx += *incx;
kk = kk + *n - j + 1;
/* L80: */
}
}
}
return 0;
/* End of DSPR . */
} /* dspr_ */
#endif
|