File: template_blas_symm.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (329 lines) | stat: -rw-r--r-- 11,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_BLAS_SYMM_HEADER
#define TEMPLATE_BLAS_SYMM_HEADER


template<class Treal>
int template_blas_symm(const char *side, const char *uplo, const integer *m, const integer *n, 
	const Treal *alpha, const Treal *a, const integer *lda, const Treal *b, 
	const integer *ldb, const Treal *beta, Treal *c__, const integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
	    i__3;
    /* Local variables */
     integer info;
     Treal temp1, temp2;
     integer i__, j, k;
     integer nrowa;
     logical upper;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/*  Purpose   
    =======   
    DSYMM  performs one of the matrix-matrix operations   
       C := alpha*A*B + beta*C,   
    or   
       C := alpha*B*A + beta*C,   
    where alpha and beta are scalars,  A is a symmetric matrix and  B and   
    C are  m by n matrices.   
    Parameters   
    ==========   
    SIDE   - CHARACTER*1.   
             On entry,  SIDE  specifies whether  the  symmetric matrix  A   
             appears on the  left or right  in the  operation as follows:   
                SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,   
                SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,   
             Unchanged on exit.   
    UPLO   - CHARACTER*1.   
             On  entry,   UPLO  specifies  whether  the  upper  or  lower   
             triangular  part  of  the  symmetric  matrix   A  is  to  be   
             referenced as follows:   
                UPLO = 'U' or 'u'   Only the upper triangular part of the   
                                    symmetric matrix is to be referenced.   
                UPLO = 'L' or 'l'   Only the lower triangular part of the   
                                    symmetric matrix is to be referenced.   
             Unchanged on exit.   
    M      - INTEGER.   
             On entry,  M  specifies the number of rows of the matrix  C.   
             M  must be at least zero.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the number of columns of the matrix C.   
             N  must be at least zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is   
             m  when  SIDE = 'L' or 'l'  and is  n otherwise.   
             Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of   
             the array  A  must contain the  symmetric matrix,  such that   
             when  UPLO = 'U' or 'u', the leading m by m upper triangular   
             part of the array  A  must contain the upper triangular part   
             of the  symmetric matrix and the  strictly  lower triangular   
             part of  A  is not referenced,  and when  UPLO = 'L' or 'l',   
             the leading  m by m  lower triangular part  of the  array  A   
             must  contain  the  lower triangular part  of the  symmetric   
             matrix and the  strictly upper triangular part of  A  is not   
             referenced.   
             Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of   
             the array  A  must contain the  symmetric matrix,  such that   
             when  UPLO = 'U' or 'u', the leading n by n upper triangular   
             part of the array  A  must contain the upper triangular part   
             of the  symmetric matrix and the  strictly  lower triangular   
             part of  A  is not referenced,  and when  UPLO = 'L' or 'l',   
             the leading  n by n  lower triangular part  of the  array  A   
             must  contain  the  lower triangular part  of the  symmetric   
             matrix and the  strictly upper triangular part of  A  is not   
             referenced.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in the calling (sub) program.  When  SIDE = 'L' or 'l'  then   
             LDA must be at least  max( 1, m ), otherwise  LDA must be at   
             least  max( 1, n ).   
             Unchanged on exit.   
    B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).   
             Before entry, the leading  m by n part of the array  B  must   
             contain the matrix B.   
             Unchanged on exit.   
    LDB    - INTEGER.   
             On entry, LDB specifies the first dimension of B as declared   
             in  the  calling  (sub)  program.   LDB  must  be  at  least   
             max( 1, m ).   
             Unchanged on exit.   
    BETA   - DOUBLE PRECISION.   
             On entry,  BETA  specifies the scalar  beta.  When  BETA  is   
             supplied as zero then C need not be set on input.   
             Unchanged on exit.   
    C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).   
             Before entry, the leading  m by n  part of the array  C must   
             contain the matrix  C,  except when  beta  is zero, in which   
             case C need not be set on entry.   
             On exit, the array  C  is overwritten by the  m by n updated   
             matrix.   
    LDC    - INTEGER.   
             On entry, LDC specifies the first dimension of C as declared   
             in  the  calling  (sub)  program.   LDC  must  be  at  least   
             max( 1, m ).   
             Unchanged on exit.   
    Level 3 Blas routine.   
    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   
       Set NROWA as the number of rows of A.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    /* Function Body */
    if (template_blas_lsame(side, "L")) {
	nrowa = *m;
    } else {
	nrowa = *n;
    }
    upper = template_blas_lsame(uplo, "U");
/*     Test the input parameters. */
    info = 0;
    if (! template_blas_lsame(side, "L") && ! template_blas_lsame(side, "R")) {
	info = 1;
    } else if (! upper && ! template_blas_lsame(uplo, "L")) {
	info = 2;
    } else if (*m < 0) {
	info = 3;
    } else if (*n < 0) {
	info = 4;
    } else if (*lda < maxMACRO(1,nrowa)) {
	info = 7;
    } else if (*ldb < maxMACRO(1,*m)) {
	info = 9;
    } else if (*ldc < maxMACRO(1,*m)) {
	info = 12;
    }
    if (info != 0) {
	template_blas_erbla("SYMM  ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*m == 0 || *n == 0 || ( *alpha == 0. && *beta == 1. ) ) {
	return 0;
    }
/*     And when  alpha.eq.zero. */
    if (*alpha == 0.) {
	if (*beta == 0.) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = 0.;
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
		}
/* L40: */
	    }
	}
	return 0;
    }
/*     Start the operations. */
    if (template_blas_lsame(side, "L")) {
/*        Form  C := alpha*A*B + beta*C. */
	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp1 = *alpha * b_ref(i__, j);
		    temp2 = 0.;
		    i__3 = i__ - 1;
		    for (k = 1; k <= i__3; ++k) {
			c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
			temp2 += b_ref(k, j) * a_ref(k, i__);
/* L50: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha * 
				temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * 
				a_ref(i__, i__) + *alpha * temp2;
		    }
/* L60: */
		}
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		for (i__ = *m; i__ >= 1; --i__) {
		    temp1 = *alpha * b_ref(i__, j);
		    temp2 = 0.;
		    i__2 = *m;
		    for (k = i__ + 1; k <= i__2; ++k) {
			c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
			temp2 += b_ref(k, j) * a_ref(k, i__);
/* L80: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha * 
				temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * 
				a_ref(i__, i__) + *alpha * temp2;
		    }
/* L90: */
		}
/* L100: */
	    }
	}
    } else {
/*        Form  C := alpha*B*A + beta*C. */
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    temp1 = *alpha * a_ref(j, j);
	    if (*beta == 0.) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = temp1 * b_ref(i__, j);
/* L110: */
		}
	    } else {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * b_ref(
			    i__, j);
/* L120: */
		}
	    }
	    i__2 = j - 1;
	    for (k = 1; k <= i__2; ++k) {
		if (upper) {
		    temp1 = *alpha * a_ref(k, j);
		} else {
		    temp1 = *alpha * a_ref(j, k);
		}
		i__3 = *m;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L130: */
		}
/* L140: */
	    }
	    i__2 = *n;
	    for (k = j + 1; k <= i__2; ++k) {
		if (upper) {
		    temp1 = *alpha * a_ref(j, k);
		} else {
		    temp1 = *alpha * a_ref(k, j);
		}
		i__3 = *m;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L150: */
		}
/* L160: */
	    }
/* L170: */
	}
    }
    return 0;
/*     End of DSYMM . */
} /* dsymm_ */
#undef c___ref
#undef b_ref
#undef a_ref

#endif