1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_BLAS_SYMM_HEADER
#define TEMPLATE_BLAS_SYMM_HEADER
template<class Treal>
int template_blas_symm(const char *side, const char *uplo, const integer *m, const integer *n,
const Treal *alpha, const Treal *a, const integer *lda, const Treal *b,
const integer *ldb, const Treal *beta, Treal *c__, const integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3;
/* Local variables */
integer info;
Treal temp1, temp2;
integer i__, j, k;
integer nrowa;
logical upper;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/* Purpose
=======
DSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C,
or
C := alpha*B*A + beta*C,
where alpha and beta are scalars, A is a symmetric matrix and B and
C are m by n matrices.
Parameters
==========
SIDE - CHARACTER*1.
On entry, SIDE specifies whether the symmetric matrix A
appears on the left or right in the operation as follows:
SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
Unchanged on exit.
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the symmetric matrix A is to be
referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of the
symmetric matrix is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of the
symmetric matrix is to be referenced.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of the matrix C.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix C.
N must be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
m when SIDE = 'L' or 'l' and is n otherwise.
Before entry with SIDE = 'L' or 'l', the m by m part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading m by m upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading m by m lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
Before entry with SIDE = 'R' or 'r', the n by n part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading n by n upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading n by n lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, n ).
Unchanged on exit.
B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
Before entry, the leading m by n part of the array B must
contain the matrix B.
Unchanged on exit.
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
Unchanged on exit.
BETA - DOUBLE PRECISION.
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
Unchanged on exit.
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n updated
matrix.
LDC - INTEGER.
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Set NROWA as the number of rows of A.
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
/* Function Body */
if (template_blas_lsame(side, "L")) {
nrowa = *m;
} else {
nrowa = *n;
}
upper = template_blas_lsame(uplo, "U");
/* Test the input parameters. */
info = 0;
if (! template_blas_lsame(side, "L") && ! template_blas_lsame(side, "R")) {
info = 1;
} else if (! upper && ! template_blas_lsame(uplo, "L")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < maxMACRO(1,nrowa)) {
info = 7;
} else if (*ldb < maxMACRO(1,*m)) {
info = 9;
} else if (*ldc < maxMACRO(1,*m)) {
info = 12;
}
if (info != 0) {
template_blas_erbla("SYMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || ( *alpha == 0. && *beta == 1. ) ) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (template_blas_lsame(side, "L")) {
/* Form C := alpha*A*B + beta*C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp1 = *alpha * b_ref(i__, j);
temp2 = 0.;
i__3 = i__ - 1;
for (k = 1; k <= i__3; ++k) {
c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
temp2 += b_ref(k, j) * a_ref(k, i__);
/* L50: */
}
if (*beta == 0.) {
c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha *
temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 *
a_ref(i__, i__) + *alpha * temp2;
}
/* L60: */
}
/* L70: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (i__ = *m; i__ >= 1; --i__) {
temp1 = *alpha * b_ref(i__, j);
temp2 = 0.;
i__2 = *m;
for (k = i__ + 1; k <= i__2; ++k) {
c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
temp2 += b_ref(k, j) * a_ref(k, i__);
/* L80: */
}
if (*beta == 0.) {
c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha *
temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 *
a_ref(i__, i__) + *alpha * temp2;
}
/* L90: */
}
/* L100: */
}
}
} else {
/* Form C := alpha*B*A + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * a_ref(j, j);
if (*beta == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = temp1 * b_ref(i__, j);
/* L110: */
}
} else {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * b_ref(
i__, j);
/* L120: */
}
}
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
if (upper) {
temp1 = *alpha * a_ref(k, j);
} else {
temp1 = *alpha * a_ref(j, k);
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L130: */
}
/* L140: */
}
i__2 = *n;
for (k = j + 1; k <= i__2; ++k) {
if (upper) {
temp1 = *alpha * a_ref(j, k);
} else {
temp1 = *alpha * a_ref(k, j);
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L150: */
}
/* L160: */
}
/* L170: */
}
}
return 0;
/* End of DSYMM . */
} /* dsymm_ */
#undef c___ref
#undef b_ref
#undef a_ref
#endif
|