1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_BLAS_TPSV_HEADER
#define TEMPLATE_BLAS_TPSV_HEADER
template<class Treal>
int template_blas_tpsv(const char *uplo, const char *trans, const char *diag, const integer *n,
const Treal *ap, Treal *x, const integer *incx)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer info;
Treal temp;
integer i__, j, k;
integer kk, ix, jx, kx;
logical nounit;
/* Purpose
=======
DTPSV solves one of the systems of equations
A*x = b, or A'*x = b,
where b and x are n element vectors and A is an n by n unit, or
non-unit, upper or lower triangular matrix, supplied in packed form.
No test for singularity or near-singularity is included in this
routine. Such tests must be performed before calling this routine.
Parameters
==========
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the matrix is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
Unchanged on exit.
TRANS - CHARACTER*1.
On entry, TRANS specifies the equations to be solved as
follows:
TRANS = 'N' or 'n' A*x = b.
TRANS = 'T' or 't' A'*x = b.
TRANS = 'C' or 'c' A'*x = b.
Unchanged on exit.
DIAG - CHARACTER*1.
On entry, DIAG specifies whether or not A is unit
triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.
AP - DOUBLE PRECISION array of DIMENSION at least
( ( n*( n + 1 ) )/2 ).
Before entry with UPLO = 'U' or 'u', the array AP must
contain the upper triangular matrix packed sequentially,
column by column, so that AP( 1 ) contains a( 1, 1 ),
AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
respectively, and so on.
Before entry with UPLO = 'L' or 'l', the array AP must
contain the lower triangular matrix packed sequentially,
column by column, so that AP( 1 ) contains a( 1, 1 ),
AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
respectively, and so on.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced, but are assumed to be unity.
Unchanged on exit.
X - DOUBLE PRECISION array of dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element right-hand side vector b. On exit, X is overwritten
with the solution vector x.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments */
--x;
--ap;
/* Initialization added by Elias to get rid of compiler warnings. */
kx = 0;
/* Function Body */
info = 0;
if (! template_blas_lsame(uplo, "U") && ! template_blas_lsame(uplo, "L")) {
info = 1;
} else if (! template_blas_lsame(trans, "N") && ! template_blas_lsame(trans,
"T") && ! template_blas_lsame(trans, "C")) {
info = 2;
} else if (! template_blas_lsame(diag, "U") && ! template_blas_lsame(diag,
"N")) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*incx == 0) {
info = 7;
}
if (info != 0) {
template_blas_erbla("DTPSV ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
nounit = template_blas_lsame(diag, "N");
/* Set up the start point in X if the increment is not unity. This
will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of AP are
accessed sequentially with one pass through AP. */
if (template_blas_lsame(trans, "N")) {
/* Form x := inv( A )*x. */
if (template_blas_lsame(uplo, "U")) {
kk = *n * (*n + 1) / 2;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
if (x[j] != 0.) {
if (nounit) {
x[j] /= ap[kk];
}
temp = x[j];
k = kk - 1;
for (i__ = j - 1; i__ >= 1; --i__) {
x[i__] -= temp * ap[k];
--k;
/* L10: */
}
}
kk -= j;
/* L20: */
}
} else {
jx = kx + (*n - 1) * *incx;
for (j = *n; j >= 1; --j) {
if (x[jx] != 0.) {
if (nounit) {
x[jx] /= ap[kk];
}
temp = x[jx];
ix = jx;
i__1 = kk - j + 1;
for (k = kk - 1; k >= i__1; --k) {
ix -= *incx;
x[ix] -= temp * ap[k];
/* L30: */
}
}
jx -= *incx;
kk -= j;
/* L40: */
}
}
} else {
kk = 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.) {
if (nounit) {
x[j] /= ap[kk];
}
temp = x[j];
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
x[i__] -= temp * ap[k];
++k;
/* L50: */
}
}
kk += *n - j + 1;
/* L60: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.) {
if (nounit) {
x[jx] /= ap[kk];
}
temp = x[jx];
ix = jx;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
x[ix] -= temp * ap[k];
/* L70: */
}
}
jx += *incx;
kk += *n - j + 1;
/* L80: */
}
}
}
} else {
/* Form x := inv( A' )*x. */
if (template_blas_lsame(uplo, "U")) {
kk = 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = x[j];
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
temp -= ap[k] * x[i__];
++k;
/* L90: */
}
if (nounit) {
temp /= ap[kk + j - 1];
}
x[j] = temp;
kk += j;
/* L100: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = x[jx];
ix = kx;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
temp -= ap[k] * x[ix];
ix += *incx;
/* L110: */
}
if (nounit) {
temp /= ap[kk + j - 1];
}
x[jx] = temp;
jx += *incx;
kk += j;
/* L120: */
}
}
} else {
kk = *n * (*n + 1) / 2;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
temp = x[j];
k = kk;
i__1 = j + 1;
for (i__ = *n; i__ >= i__1; --i__) {
temp -= ap[k] * x[i__];
--k;
/* L130: */
}
if (nounit) {
temp /= ap[kk - *n + j];
}
x[j] = temp;
kk -= *n - j + 1;
/* L140: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
temp = x[jx];
ix = kx;
i__1 = kk - (*n - (j + 1));
for (k = kk; k >= i__1; --k) {
temp -= ap[k] * x[ix];
ix -= *incx;
/* L150: */
}
if (nounit) {
temp /= ap[kk - *n + j];
}
x[jx] = temp;
jx -= *incx;
kk -= *n - j + 1;
/* L160: */
}
}
}
}
return 0;
/* End of DTPSV . */
} /* dtpsv_ */
#endif
|