1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_BLAS_TRSM_HEADER
#define TEMPLATE_BLAS_TRSM_HEADER
#include "template_blas_common.h"
template<class Treal>
int template_blas_trsm(const char *side, const char *uplo, const char *transa, const char *diag,
const integer *m, const integer *n, const Treal *alpha, const Treal *a, const integer *
lda, Treal *b, const integer *ldb)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
/* Local variables */
integer info;
Treal temp;
integer i__, j, k;
logical lside;
integer nrowa;
logical upper;
logical nounit;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
/* Purpose
=======
DTRSM solves one of the matrix equations
op( A )*X = alpha*B, or X*op( A ) = alpha*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A'.
The matrix X is overwritten on B.
Parameters
==========
SIDE - CHARACTER*1.
On entry, SIDE specifies whether op( A ) appears on the left
or right of X as follows:
SIDE = 'L' or 'l' op( A )*X = alpha*B.
SIDE = 'R' or 'r' X*op( A ) = alpha*B.
Unchanged on exit.
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the matrix A is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
Unchanged on exit.
TRANSA - CHARACTER*1.
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n' op( A ) = A.
TRANSA = 'T' or 't' op( A ) = A'.
TRANSA = 'C' or 'c' op( A ) = A'.
Unchanged on exit.
DIAG - CHARACTER*1.
On entry, DIAG specifies whether or not A is unit triangular
as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of B. M must be at
least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of B. N must be
at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha. When alpha is
zero then A is not referenced and B need not be set before
entry.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
Before entry with UPLO = 'U' or 'u', the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with UPLO = 'L' or 'l', the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
then LDA must be at least max( 1, n ).
Unchanged on exit.
B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
Before entry, the leading m by n part of the array B must
contain the right-hand side matrix B, and on exit is
overwritten by the solution matrix X.
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Test the input parameters.
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
/* Function Body */
lside = template_blas_lsame(side, "L");
if (lside) {
nrowa = *m;
} else {
nrowa = *n;
}
nounit = template_blas_lsame(diag, "N");
upper = template_blas_lsame(uplo, "U");
info = 0;
if (! lside && ! template_blas_lsame(side, "R")) {
info = 1;
} else if (! upper && ! template_blas_lsame(uplo, "L")) {
info = 2;
} else if (! template_blas_lsame(transa, "N") && ! template_blas_lsame(transa,
"T") && ! template_blas_lsame(transa, "C")) {
info = 3;
} else if (! template_blas_lsame(diag, "U") && ! template_blas_lsame(diag,
"N")) {
info = 4;
} else if (*m < 0) {
info = 5;
} else if (*n < 0) {
info = 6;
} else if (*lda < maxMACRO(1,nrowa)) {
info = 9;
} else if (*ldb < maxMACRO(1,*m)) {
info = 11;
}
if (info != 0) {
template_blas_erbla("TRSM ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = 0.;
/* L10: */
}
/* L20: */
}
return 0;
}
/* Start the operations. */
if (lside) {
if (template_blas_lsame(transa, "N")) {
/* Form B := alpha*inv( A )*B. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*alpha != 1.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = *alpha * b_ref(i__, j);
/* L30: */
}
}
for (k = *m; k >= 1; --k) {
if (b_ref(k, j) != 0.) {
if (nounit) {
b_ref(k, j) = b_ref(k, j) / a_ref(k, k);
}
i__2 = k - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - b_ref(k, j) *
a_ref(i__, k);
/* L40: */
}
}
/* L50: */
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*alpha != 1.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = *alpha * b_ref(i__, j);
/* L70: */
}
}
i__2 = *m;
for (k = 1; k <= i__2; ++k) {
if (b_ref(k, j) != 0.) {
if (nounit) {
b_ref(k, j) = b_ref(k, j) / a_ref(k, k);
}
i__3 = *m;
for (i__ = k + 1; i__ <= i__3; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - b_ref(k, j) *
a_ref(i__, k);
/* L80: */
}
}
/* L90: */
}
/* L100: */
}
}
} else {
/* Form B := alpha*inv( A' )*B. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = *alpha * b_ref(i__, j);
i__3 = i__ - 1;
for (k = 1; k <= i__3; ++k) {
temp -= a_ref(k, i__) * b_ref(k, j);
/* L110: */
}
if (nounit) {
temp /= a_ref(i__, i__);
}
b_ref(i__, j) = temp;
/* L120: */
}
/* L130: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (i__ = *m; i__ >= 1; --i__) {
temp = *alpha * b_ref(i__, j);
i__2 = *m;
for (k = i__ + 1; k <= i__2; ++k) {
temp -= a_ref(k, i__) * b_ref(k, j);
/* L140: */
}
if (nounit) {
temp /= a_ref(i__, i__);
}
b_ref(i__, j) = temp;
/* L150: */
}
/* L160: */
}
}
}
} else {
if (template_blas_lsame(transa, "N")) {
/* Form B := alpha*B*inv( A ). */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*alpha != 1.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = *alpha * b_ref(i__, j);
/* L170: */
}
}
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
if (a_ref(k, j) != 0.) {
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - a_ref(k, j) *
b_ref(i__, k);
/* L180: */
}
}
/* L190: */
}
if (nounit) {
temp = 1. / a_ref(j, j);
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = temp * b_ref(i__, j);
/* L200: */
}
}
/* L210: */
}
} else {
for (j = *n; j >= 1; --j) {
if (*alpha != 1.) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b_ref(i__, j) = *alpha * b_ref(i__, j);
/* L220: */
}
}
i__1 = *n;
for (k = j + 1; k <= i__1; ++k) {
if (a_ref(k, j) != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - a_ref(k, j) *
b_ref(i__, k);
/* L230: */
}
}
/* L240: */
}
if (nounit) {
temp = 1. / a_ref(j, j);
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b_ref(i__, j) = temp * b_ref(i__, j);
/* L250: */
}
}
/* L260: */
}
}
} else {
/* Form B := alpha*B*inv( A' ). */
if (upper) {
for (k = *n; k >= 1; --k) {
if (nounit) {
temp = 1. / a_ref(k, k);
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b_ref(i__, k) = temp * b_ref(i__, k);
/* L270: */
}
}
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
if (a_ref(j, k) != 0.) {
temp = a_ref(j, k);
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - temp * b_ref(
i__, k);
/* L280: */
}
}
/* L290: */
}
if (*alpha != 1.) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b_ref(i__, k) = *alpha * b_ref(i__, k);
/* L300: */
}
}
/* L310: */
}
} else {
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (nounit) {
temp = 1. / a_ref(k, k);
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, k) = temp * b_ref(i__, k);
/* L320: */
}
}
i__2 = *n;
for (j = k + 1; j <= i__2; ++j) {
if (a_ref(j, k) != 0.) {
temp = a_ref(j, k);
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
b_ref(i__, j) = b_ref(i__, j) - temp * b_ref(
i__, k);
/* L330: */
}
}
/* L340: */
}
if (*alpha != 1.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b_ref(i__, k) = *alpha * b_ref(i__, k);
/* L350: */
}
}
/* L360: */
}
}
}
}
return 0;
/* End of DTRSM . */
} /* dtrsm_ */
#undef b_ref
#undef a_ref
#endif
|