1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_GEQR2_HEADER
#define TEMPLATE_LAPACK_GEQR2_HEADER
template<class Treal>
int template_lapack_geqr2(const integer *m, const integer *n, Treal *a, const integer *
lda, Treal *tau, Treal *work, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
Test the input arguments
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, k;
Treal aii;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < maxMACRO(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("GEQR2 ", &i__1);
return 0;
}
k = minMACRO(*m,*n);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
Computing MIN */
i__2 = i__ + 1;
i__3 = *m - i__ + 1;
template_lapack_larfg(&i__3, &a_ref(i__, i__), &a_ref(minMACRO(i__2,*m), i__), &c__1, &
tau[i__]);
if (i__ < *n) {
/* Apply H(i) to A(i:m,i+1:n) from the left */
aii = a_ref(i__, i__);
a_ref(i__, i__) = 1.;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
template_lapack_larf("Left", &i__2, &i__3, &a_ref(i__, i__), &c__1, &tau[i__], &
a_ref(i__, i__ + 1), lda, &work[1]);
a_ref(i__, i__) = aii;
}
/* L10: */
}
return 0;
/* End of DGEQR2 */
} /* dgeqr2_ */
#undef a_ref
#endif
|