File: template_lapack_geqr2.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (175 lines) | stat: -rw-r--r-- 5,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_GEQR2_HEADER
#define TEMPLATE_LAPACK_GEQR2_HEADER


template<class Treal>
int template_lapack_geqr2(const integer *m, const integer *n, Treal *a, const integer *
	lda, Treal *tau, Treal *work, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DGEQR2 computes a QR factorization of a real m by n matrix A:   
    A = Q * R.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the m by n matrix A.   
            On exit, the elements on and above the diagonal of the array   
            contain the min(m,n) by n upper trapezoidal matrix R (R is   
            upper triangular if m >= n); the elements below the diagonal,   
            with the array TAU, represent the orthogonal matrix Q as a   
            product of elementary reflectors (see Further Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(m,n).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),   
    and tau in TAU(i).   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    /* Local variables */
     integer i__, k;
     Treal aii;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < maxMACRO(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("GEQR2 ", &i__1);
	return 0;
    }

    k = minMACRO(*m,*n);

    i__1 = k;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Generate elementary reflector H(i) to annihilate A(i+1:m,i)   

   Computing MIN */
	i__2 = i__ + 1;
	i__3 = *m - i__ + 1;
	template_lapack_larfg(&i__3, &a_ref(i__, i__), &a_ref(minMACRO(i__2,*m), i__), &c__1, &
		tau[i__]);
	if (i__ < *n) {

/*           Apply H(i) to A(i:m,i+1:n) from the left */

	    aii = a_ref(i__, i__);
	    a_ref(i__, i__) = 1.;
	    i__2 = *m - i__ + 1;
	    i__3 = *n - i__;
	    template_lapack_larf("Left", &i__2, &i__3, &a_ref(i__, i__), &c__1, &tau[i__], &
		    a_ref(i__, i__ + 1), lda, &work[1]);
	    a_ref(i__, i__) = aii;
	}
/* L10: */
    }
    return 0;

/*     End of DGEQR2 */

} /* dgeqr2_ */

#undef a_ref


#endif