File: template_lapack_gesv.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (153 lines) | stat: -rw-r--r-- 5,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_GESV_HEADER
#define TEMPLATE_LAPACK_GESV_HEADER


template<class Treal>
int template_lapack_gesv(const integer *n, const integer *nrhs, Treal *a, const integer 
	*lda, integer *ipiv, Treal *b, const integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DGESV computes the solution to a real system of linear equations   
       A * X = B,   
    where A is an N-by-N matrix and X and B are N-by-NRHS matrices.   

    The LU decomposition with partial pivoting and row interchanges is   
    used to factor A as   
       A = P * L * U,   
    where P is a permutation matrix, L is unit lower triangular, and U is   
    upper triangular.  The factored form of A is then used to solve the   
    system of equations A * X = B.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N coefficient matrix A.   
            On exit, the factors L and U from the factorization   
            A = P*L*U; the unit diagonal elements of L are not stored.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    IPIV    (output) INTEGER array, dimension (N)   
            The pivot indices that define the permutation matrix P;   
            row i of the matrix was interchanged with row IPIV(i).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS matrix of right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization   
                  has been completed, but the factor U is exactly   
                  singular, so the solution could not be computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    /* Local variables */

    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*nrhs < 0) {
	*info = -2;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -4;
    } else if (*ldb < maxMACRO(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("GESV  ", &i__1);
	return 0;
    }

/*     Compute the LU factorization of A. */

    template_lapack_getrf(n, n, &a[a_offset], lda, &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

      template_lapack_getrs("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
						  b_offset], ldb, info);
    }
    return 0;

/*     End of DGESV */

} /* dgesv_ */

#endif