File: template_lapack_gghrd.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (334 lines) | stat: -rw-r--r-- 10,859 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_GGHRD_HEADER
#define TEMPLATE_LAPACK_GGHRD_HEADER


template<class Treal>
int template_lapack_gghrd(const char *compq, const char *compz, const integer *n, const integer *
	ilo, const integer *ihi, Treal *a, const integer *lda, Treal *b, 
	const integer *ldb, Treal *q, const integer *ldq, Treal *z__, const integer *
	ldz, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DGGHRD reduces a pair of real matrices (A,B) to generalized upper   
    Hessenberg form using orthogonal transformations, where A is a   
    general matrix and B is upper triangular:  Q' * A * Z = H and   
    Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular,   
    and Q and Z are orthogonal, and ' means transpose.   

    The orthogonal matrices Q and Z are determined as products of Givens   
    rotations.  They may either be formed explicitly, or they may be   
    postmultiplied into input matrices Q1 and Z1, so that   

         Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'   
         Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)'   

    Arguments   
    =========   

    COMPQ   (input) CHARACTER*1   
            = 'N': do not compute Q;   
            = 'I': Q is initialized to the unit matrix, and the   
                   orthogonal matrix Q is returned;   
            = 'V': Q must contain an orthogonal matrix Q1 on entry,   
                   and the product Q1*Q is returned.   

    COMPZ   (input) CHARACTER*1   
            = 'N': do not compute Z;   
            = 'I': Z is initialized to the unit matrix, and the   
                   orthogonal matrix Z is returned;   
            = 'V': Z must contain an orthogonal matrix Z1 on entry,   
                   and the product Z1*Z is returned.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that A is already upper triangular in rows and   
            columns 1:ILO-1 and IHI+1:N.  ILO and IHI are normally set   
            by a previous call to DGGBAL; otherwise they should be set   
            to 1 and N respectively.   
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the N-by-N general matrix to be reduced.   
            On exit, the upper triangle and the first subdiagonal of A   
            are overwritten with the upper Hessenberg matrix H, and the   
            rest is set to zero.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)   
            On entry, the N-by-N upper triangular matrix B.   
            On exit, the upper triangular matrix T = Q' B Z.  The   
            elements below the diagonal are set to zero.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)   
            If COMPQ='N':  Q is not referenced.   
            If COMPQ='I':  on entry, Q need not be set, and on exit it   
                           contains the orthogonal matrix Q, where Q'   
                           is the product of the Givens transformations   
                           which are applied to A and B on the left.   
            If COMPQ='V':  on entry, Q must contain an orthogonal matrix   
                           Q1, and on exit this is overwritten by Q1*Q.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.   
            LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.   

    Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)   
            If COMPZ='N':  Z is not referenced.   
            If COMPZ='I':  on entry, Z need not be set, and on exit it   
                           contains the orthogonal matrix Z, which is   
                           the product of the Givens transformations   
                           which are applied to A and B on the right.   
            If COMPZ='V':  on entry, Z must contain an orthogonal matrix   
                           Z1, and on exit this is overwritten by Z1*Z.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.   
            LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    This routine reduces A to Hessenberg and B to triangular form by   
    an unblocked reduction, as described in _Matrix_Computations_,   
    by Golub and Van Loan (Johns Hopkins Press.)   

    =====================================================================   


       Decode COMPQ   

       Parameter adjustments */
    /* Table of constant values */
     Treal c_b10 = 0.;
     Treal c_b11 = 1.;
     integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3;
    /* Local variables */
     integer jcol;
     Treal temp;
     integer jrow;
     Treal c__, s;
     integer icompq, icompz;
     logical ilq, ilz;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;

    /* Initialization added by Elias to get rid of compiler warnings. */
    ilq = ilz = 0;
    /* Function Body */
    if (template_blas_lsame(compq, "N")) {
	ilq = FALSE_;
	icompq = 1;
    } else if (template_blas_lsame(compq, "V")) {
	ilq = TRUE_;
	icompq = 2;
    } else if (template_blas_lsame(compq, "I")) {
	ilq = TRUE_;
	icompq = 3;
    } else {
	icompq = 0;
    }

/*     Decode COMPZ */

    if (template_blas_lsame(compz, "N")) {
	ilz = FALSE_;
	icompz = 1;
    } else if (template_blas_lsame(compz, "V")) {
	ilz = TRUE_;
	icompz = 2;
    } else if (template_blas_lsame(compz, "I")) {
	ilz = TRUE_;
	icompz = 3;
    } else {
	icompz = 0;
    }

/*     Test the input parameters. */

    *info = 0;
    if (icompq <= 0) {
	*info = -1;
    } else if (icompz <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1) {
	*info = -4;
    } else if (*ihi > *n || *ihi < *ilo - 1) {
	*info = -5;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -7;
    } else if (*ldb < maxMACRO(1,*n)) {
	*info = -9;
    } else if ( ( ilq && *ldq < *n ) || *ldq < 1) {
	*info = -11;
    } else if ( ( ilz && *ldz < *n ) || *ldz < 1) {
	*info = -13;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("GGHRD ", &i__1);
	return 0;
    }

/*     Initialize Q and Z if desired. */

    if (icompq == 3) {
	template_lapack_laset("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq);
    }
    if (icompz == 3) {
	template_lapack_laset("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz);
    }

/*     Quick return if possible */

    if (*n <= 1) {
	return 0;
    }

/*     Zero out lower triangle of B */

    i__1 = *n - 1;
    for (jcol = 1; jcol <= i__1; ++jcol) {
	i__2 = *n;
	for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
	    b_ref(jrow, jcol) = 0.;
/* L10: */
	}
/* L20: */
    }

/*     Reduce A and B */

    i__1 = *ihi - 2;
    for (jcol = *ilo; jcol <= i__1; ++jcol) {

	i__2 = jcol + 2;
	for (jrow = *ihi; jrow >= i__2; --jrow) {

/*           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */

	    temp = a_ref(jrow - 1, jcol);
	    template_lapack_lartg(&temp, &a_ref(jrow, jcol), &c__, &s, &a_ref(jrow - 1, 
		    jcol));
	    a_ref(jrow, jcol) = 0.;
	    i__3 = *n - jcol;
	    template_blas_rot(&i__3, &a_ref(jrow - 1, jcol + 1), lda, &a_ref(jrow, jcol + 
		    1), lda, &c__, &s);
	    i__3 = *n + 2 - jrow;
	    template_blas_rot(&i__3, &b_ref(jrow - 1, jrow - 1), ldb, &b_ref(jrow, jrow - 
		    1), ldb, &c__, &s);
	    if (ilq) {
		template_blas_rot(n, &q_ref(1, jrow - 1), &c__1, &q_ref(1, jrow), &c__1, &
			c__, &s);
	    }

/*           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */

	    temp = b_ref(jrow, jrow);
	    template_lapack_lartg(&temp, &b_ref(jrow, jrow - 1), &c__, &s, &b_ref(jrow, 
		    jrow));
	    b_ref(jrow, jrow - 1) = 0.;
	    template_blas_rot(ihi, &a_ref(1, jrow), &c__1, &a_ref(1, jrow - 1), &c__1, &
		    c__, &s);
	    i__3 = jrow - 1;
	    template_blas_rot(&i__3, &b_ref(1, jrow), &c__1, &b_ref(1, jrow - 1), &c__1, &
		    c__, &s);
	    if (ilz) {
		template_blas_rot(n, &z___ref(1, jrow), &c__1, &z___ref(1, jrow - 1), &
			c__1, &c__, &s);
	    }
/* L30: */
	}
/* L40: */
    }

    return 0;

/*     End of DGGHRD */

} /* dgghrd_ */

#undef z___ref
#undef q_ref
#undef b_ref
#undef a_ref


#endif