1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_GGHRD_HEADER
#define TEMPLATE_LAPACK_GGHRD_HEADER
template<class Treal>
int template_lapack_gghrd(const char *compq, const char *compz, const integer *n, const integer *
ilo, const integer *ihi, Treal *a, const integer *lda, Treal *b,
const integer *ldb, Treal *q, const integer *ldq, Treal *z__, const integer *
ldz, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DGGHRD reduces a pair of real matrices (A,B) to generalized upper
Hessenberg form using orthogonal transformations, where A is a
general matrix and B is upper triangular: Q' * A * Z = H and
Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular,
and Q and Z are orthogonal, and ' means transpose.
The orthogonal matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'
Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)'
Arguments
=========
COMPQ (input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
orthogonal matrix Z is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry,
and the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows and
columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set
by a previous call to DGGBAL; otherwise they should be set
to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q' B Z. The
elements below the diagonal are set to zero.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
If COMPQ='N': Q is not referenced.
If COMPQ='I': on entry, Q need not be set, and on exit it
contains the orthogonal matrix Q, where Q'
is the product of the Givens transformations
which are applied to A and B on the left.
If COMPQ='V': on entry, Q must contain an orthogonal matrix
Q1, and on exit this is overwritten by Q1*Q.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
If COMPZ='N': Z is not referenced.
If COMPZ='I': on entry, Z need not be set, and on exit it
contains the orthogonal matrix Z, which is
the product of the Givens transformations
which are applied to A and B on the right.
If COMPZ='V': on entry, Z must contain an orthogonal matrix
Z1, and on exit this is overwritten by Z1*Z.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and Van Loan (Johns Hopkins Press.)
=====================================================================
Decode COMPQ
Parameter adjustments */
/* Table of constant values */
Treal c_b10 = 0.;
Treal c_b11 = 1.;
integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2, i__3;
/* Local variables */
integer jcol;
Treal temp;
integer jrow;
Treal c__, s;
integer icompq, icompz;
logical ilq, ilz;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
/* Initialization added by Elias to get rid of compiler warnings. */
ilq = ilz = 0;
/* Function Body */
if (template_blas_lsame(compq, "N")) {
ilq = FALSE_;
icompq = 1;
} else if (template_blas_lsame(compq, "V")) {
ilq = TRUE_;
icompq = 2;
} else if (template_blas_lsame(compq, "I")) {
ilq = TRUE_;
icompq = 3;
} else {
icompq = 0;
}
/* Decode COMPZ */
if (template_blas_lsame(compz, "N")) {
ilz = FALSE_;
icompz = 1;
} else if (template_blas_lsame(compz, "V")) {
ilz = TRUE_;
icompz = 2;
} else if (template_blas_lsame(compz, "I")) {
ilz = TRUE_;
icompz = 3;
} else {
icompz = 0;
}
/* Test the input parameters. */
*info = 0;
if (icompq <= 0) {
*info = -1;
} else if (icompz <= 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1) {
*info = -4;
} else if (*ihi > *n || *ihi < *ilo - 1) {
*info = -5;
} else if (*lda < maxMACRO(1,*n)) {
*info = -7;
} else if (*ldb < maxMACRO(1,*n)) {
*info = -9;
} else if ( ( ilq && *ldq < *n ) || *ldq < 1) {
*info = -11;
} else if ( ( ilz && *ldz < *n ) || *ldz < 1) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("GGHRD ", &i__1);
return 0;
}
/* Initialize Q and Z if desired. */
if (icompq == 3) {
template_lapack_laset("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq);
}
if (icompz == 3) {
template_lapack_laset("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz);
}
/* Quick return if possible */
if (*n <= 1) {
return 0;
}
/* Zero out lower triangle of B */
i__1 = *n - 1;
for (jcol = 1; jcol <= i__1; ++jcol) {
i__2 = *n;
for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
b_ref(jrow, jcol) = 0.;
/* L10: */
}
/* L20: */
}
/* Reduce A and B */
i__1 = *ihi - 2;
for (jcol = *ilo; jcol <= i__1; ++jcol) {
i__2 = jcol + 2;
for (jrow = *ihi; jrow >= i__2; --jrow) {
/* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
temp = a_ref(jrow - 1, jcol);
template_lapack_lartg(&temp, &a_ref(jrow, jcol), &c__, &s, &a_ref(jrow - 1,
jcol));
a_ref(jrow, jcol) = 0.;
i__3 = *n - jcol;
template_blas_rot(&i__3, &a_ref(jrow - 1, jcol + 1), lda, &a_ref(jrow, jcol +
1), lda, &c__, &s);
i__3 = *n + 2 - jrow;
template_blas_rot(&i__3, &b_ref(jrow - 1, jrow - 1), ldb, &b_ref(jrow, jrow -
1), ldb, &c__, &s);
if (ilq) {
template_blas_rot(n, &q_ref(1, jrow - 1), &c__1, &q_ref(1, jrow), &c__1, &
c__, &s);
}
/* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
temp = b_ref(jrow, jrow);
template_lapack_lartg(&temp, &b_ref(jrow, jrow - 1), &c__, &s, &b_ref(jrow,
jrow));
b_ref(jrow, jrow - 1) = 0.;
template_blas_rot(ihi, &a_ref(1, jrow), &c__1, &a_ref(1, jrow - 1), &c__1, &
c__, &s);
i__3 = jrow - 1;
template_blas_rot(&i__3, &b_ref(1, jrow), &c__1, &b_ref(1, jrow - 1), &c__1, &
c__, &s);
if (ilz) {
template_blas_rot(n, &z___ref(1, jrow), &c__1, &z___ref(1, jrow - 1), &
c__1, &c__, &s);
}
/* L30: */
}
/* L40: */
}
return 0;
/* End of DGGHRD */
} /* dgghrd_ */
#undef z___ref
#undef q_ref
#undef b_ref
#undef a_ref
#endif
|