1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LACON_HEADER
#define TEMPLATE_LAPACK_LACON_HEADER
template<class Treal>
int template_lapack_lacon(const integer *n, Treal *v, Treal *x,
integer *isgn, Treal *est, integer *kase)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLACON estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) DOUBLE PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) DOUBLE PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and DLACON must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (output) DOUBLE PRECISION
An estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
Treal c_b11 = 1.;
/* System generated locals */
integer i__1;
Treal d__1;
/* Builtin functions */
double d_sign(Treal *, Treal *);
integer i_dnnt(Treal *);
/* Local variables */
integer iter;
Treal temp;
integer jump, i__, j;
integer jlast;
Treal altsgn, estold;
--isgn;
--x;
--v;
/* Function Body */
if (*kase == 0) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = 1. / (Treal) (*n);
/* L10: */
}
*kase = 1;
jump = 1;
return 0;
}
switch (jump) {
case 1: goto L20;
case 2: goto L40;
case 3: goto L70;
case 4: goto L110;
case 5: goto L140;
}
/* ................ ENTRY (JUMP = 1)
FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */
L20:
if (*n == 1) {
v[1] = x[1];
*est = absMACRO(v[1]);
/* ... QUIT */
goto L150;
}
*est = template_blas_asum(n, &x[1], &c__1);
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = d_sign(&c_b11, &x[i__]);
isgn[i__] = i_dnnt(&x[i__]);
/* L30: */
}
*kase = 2;
jump = 2;
return 0;
/* ................ ENTRY (JUMP = 2)
FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L40:
j = template_blas_idamax(n, &x[1], &c__1);
iter = 2;
/* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = 0.;
/* L60: */
}
x[j] = 1.;
*kase = 1;
jump = 3;
return 0;
/* ................ ENTRY (JUMP = 3)
X HAS BEEN OVERWRITTEN BY A*X. */
L70:
template_blas_copy(n, &x[1], &c__1, &v[1], &c__1);
estold = *est;
*est = template_blas_asum(n, &v[1], &c__1);
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__1 = d_sign(&c_b11, &x[i__]);
if (i_dnnt(&d__1) != isgn[i__]) {
goto L90;
}
/* L80: */
}
/* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */
goto L120;
L90:
/* TEST FOR CYCLING. */
if (*est <= estold) {
goto L120;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = d_sign(&c_b11, &x[i__]);
isgn[i__] = i_dnnt(&x[i__]);
/* L100: */
}
*kase = 2;
jump = 4;
return 0;
/* ................ ENTRY (JUMP = 4)
X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
jlast = j;
j = template_blas_idamax(n, &x[1], &c__1);
if (x[jlast] != (d__1 = x[j], absMACRO(d__1)) && iter < 5) {
++iter;
goto L50;
}
/* ITERATION COMPLETE. FINAL STAGE. */
L120:
altsgn = 1.;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = altsgn * ((Treal) (i__ - 1) / (Treal) (*n - 1) +
1.);
altsgn = -altsgn;
/* L130: */
}
*kase = 1;
jump = 5;
return 0;
/* ................ ENTRY (JUMP = 5)
X HAS BEEN OVERWRITTEN BY A*X. */
L140:
temp = template_blas_asum(n, &x[1], &c__1) / (Treal) (*n * 3) * 2.;
if (temp > *est) {
template_blas_copy(n, &x[1], &c__1, &v[1], &c__1);
*est = temp;
}
L150:
*kase = 0;
return 0;
/* End of DLACON */
} /* dlacon_ */
#endif
|