File: template_lapack_laebz.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (656 lines) | stat: -rw-r--r-- 21,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LAEBZ_HEADER
#define TEMPLATE_LAPACK_LAEBZ_HEADER


template<class Treal>
int template_lapack_laebz(const integer *ijob, const integer *nitmax, const integer *n, 
	const integer *mmax, const integer *minp, const integer *nbmin, const Treal *abstol, 
	const Treal *reltol, const Treal *pivmin, const Treal *d__, const Treal *
	e, const Treal *e2, integer *nval, Treal *ab, Treal *c__, 
	integer *mout, integer *nab, Treal *work, integer *iwork, 
	integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DLAEBZ contains the iteration loops which compute and use the   
    function N(w), which is the count of eigenvalues of a symmetric   
    tridiagonal matrix T less than or equal to its argument  w.  It   
    performs a choice of two types of loops:   

    IJOB=1, followed by   
    IJOB=2: It takes as input a list of intervals and returns a list of   
            sufficiently small intervals whose union contains the same   
            eigenvalues as the union of the original intervals.   
            The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.   
            The output interval (AB(j,1),AB(j,2)] will contain   
            eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.   

    IJOB=3: It performs a binary search in each input interval   
            (AB(j,1),AB(j,2)] for a point  w(j)  such that   
            N(w(j))=NVAL(j), and uses  C(j)  as the starting point of   
            the search.  If such a w(j) is found, then on output   
            AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output   
            (AB(j,1),AB(j,2)] will be a small interval containing the   
            point where N(w) jumps through NVAL(j), unless that point   
            lies outside the initial interval.   

    Note that the intervals are in all cases half-open intervals,   
    i.e., of the form  (a,b] , which includes  b  but not  a .   

    To avoid underflow, the matrix should be scaled so that its largest   
    element is no greater than  overflow**(1/2) * underflow**(1/4)   
    in absolute value.  To assure the most accurate computation   
    of small eigenvalues, the matrix should be scaled to be   
    not much smaller than that, either.   

    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal   
    Matrix", Report CS41, Computer Science Dept., Stanford   
    University, July 21, 1966   

    Note: the arguments are, in general, *not* checked for unreasonable   
    values.   

    Arguments   
    =========   

    IJOB    (input) INTEGER   
            Specifies what is to be done:   
            = 1:  Compute NAB for the initial intervals.   
            = 2:  Perform bisection iteration to find eigenvalues of T.   
            = 3:  Perform bisection iteration to invert N(w), i.e.,   
                  to find a point which has a specified number of   
                  eigenvalues of T to its left.   
            Other values will cause DLAEBZ to return with INFO=-1.   

    NITMAX  (input) INTEGER   
            The maximum number of "levels" of bisection to be   
            performed, i.e., an interval of width W will not be made   
            smaller than 2^(-NITMAX) * W.  If not all intervals   
            have converged after NITMAX iterations, then INFO is set   
            to the number of non-converged intervals.   

    N       (input) INTEGER   
            The dimension n of the tridiagonal matrix T.  It must be at   
            least 1.   

    MMAX    (input) INTEGER   
            The maximum number of intervals.  If more than MMAX intervals   
            are generated, then DLAEBZ will quit with INFO=MMAX+1.   

    MINP    (input) INTEGER   
            The initial number of intervals.  It may not be greater than   
            MMAX.   

    NBMIN   (input) INTEGER   
            The smallest number of intervals that should be processed   
            using a vector loop.  If zero, then only the scalar loop   
            will be used.   

    ABSTOL  (input) DOUBLE PRECISION   
            The minimum (absolute) width of an interval.  When an   
            interval is narrower than ABSTOL, or than RELTOL times the   
            larger (in magnitude) endpoint, then it is considered to be   
            sufficiently small, i.e., converged.  This must be at least   
            zero.   

    RELTOL  (input) DOUBLE PRECISION   
            The minimum relative width of an interval.  When an interval   
            is narrower than ABSTOL, or than RELTOL times the larger (in   
            magnitude) endpoint, then it is considered to be   
            sufficiently small, i.e., converged.  Note: this should   
            always be at least radix*machine epsilon.   

    PIVMIN  (input) DOUBLE PRECISION   
            The minimum absolute value of a "pivot" in the Sturm   
            sequence loop.  This *must* be at least  max |e(j)**2| *   
            safe_min  and at least safe_min, where safe_min is at least   
            the smallest number that can divide one without overflow.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T.   

    E       (input) DOUBLE PRECISION array, dimension (N)   
            The offdiagonal elements of the tridiagonal matrix T in   
            positions 1 through N-1.  E(N) is arbitrary.   

    E2      (input) DOUBLE PRECISION array, dimension (N)   
            The squares of the offdiagonal elements of the tridiagonal   
            matrix T.  E2(N) is ignored.   

    NVAL    (input/output) INTEGER array, dimension (MINP)   
            If IJOB=1 or 2, not referenced.   
            If IJOB=3, the desired values of N(w).  The elements of NVAL   
            will be reordered to correspond with the intervals in AB.   
            Thus, NVAL(j) on output will not, in general be the same as   
            NVAL(j) on input, but it will correspond with the interval   
            (AB(j,1),AB(j,2)] on output.   

    AB      (input/output) DOUBLE PRECISION array, dimension (MMAX,2)   
            The endpoints of the intervals.  AB(j,1) is  a(j), the left   
            endpoint of the j-th interval, and AB(j,2) is b(j), the   
            right endpoint of the j-th interval.  The input intervals   
            will, in general, be modified, split, and reordered by the   
            calculation.   

    C       (input/output) DOUBLE PRECISION array, dimension (MMAX)   
            If IJOB=1, ignored.   
            If IJOB=2, workspace.   
            If IJOB=3, then on input C(j) should be initialized to the   
            first search point in the binary search.   

    MOUT    (output) INTEGER   
            If IJOB=1, the number of eigenvalues in the intervals.   
            If IJOB=2 or 3, the number of intervals output.   
            If IJOB=3, MOUT will equal MINP.   

    NAB     (input/output) INTEGER array, dimension (MMAX,2)   
            If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).   
            If IJOB=2, then on input, NAB(i,j) should be set.  It must   
               satisfy the condition:   
               N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),   
               which means that in interval i only eigenvalues   
               NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,   
               NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with   
               IJOB=1.   
               On output, NAB(i,j) will contain   
               max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of   
               the input interval that the output interval   
               (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the   
               the input values of NAB(k,1) and NAB(k,2).   
            If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),   
               unless N(w) > NVAL(i) for all search points  w , in which   
               case NAB(i,1) will not be modified, i.e., the output   
               value will be the same as the input value (modulo   
               reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)   
               for all search points  w , in which case NAB(i,2) will   
               not be modified.  Normally, NAB should be set to some   
               distinctive value(s) before DLAEBZ is called.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (MMAX)   
            Workspace.   

    IWORK   (workspace) INTEGER array, dimension (MMAX)   
            Workspace.   

    INFO    (output) INTEGER   
            = 0:       All intervals converged.   
            = 1--MMAX: The last INFO intervals did not converge.   
            = MMAX+1:  More than MMAX intervals were generated.   

    Further Details   
    ===============   

        This routine is intended to be called only by other LAPACK   
    routines, thus the interface is less user-friendly.  It is intended   
    for two purposes:   

    (a) finding eigenvalues.  In this case, DLAEBZ should have one or   
        more initial intervals set up in AB, and DLAEBZ should be called   
        with IJOB=1.  This sets up NAB, and also counts the eigenvalues.   
        Intervals with no eigenvalues would usually be thrown out at   
        this point.  Also, if not all the eigenvalues in an interval i   
        are desired, NAB(i,1) can be increased or NAB(i,2) decreased.   
        For example, set NAB(i,1)=NAB(i,2)-1 to get the largest   
        eigenvalue.  DLAEBZ is then called with IJOB=2 and MMAX   
        no smaller than the value of MOUT returned by the call with   
        IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1   
        through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the   
        tolerance specified by ABSTOL and RELTOL.   

    (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).   
        In this case, start with a Gershgorin interval  (a,b).  Set up   
        AB to contain 2 search intervals, both initially (a,b).  One   
        NVAL element should contain  f-1  and the other should contain  l   
        , while C should contain a and b, resp.  NAB(i,1) should be -1   
        and NAB(i,2) should be N+1, to flag an error if the desired   
        interval does not lie in (a,b).  DLAEBZ is then called with   
        IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --   
        j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while   
        if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r   
        >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and   
        N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and   
        w(l-r)=...=w(l+k) are handled similarly.   

    =====================================================================   


       Check for Errors   

       Parameter adjustments */
    /* System generated locals */
    integer nab_dim1, nab_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4, 
	    i__5, i__6;
    Treal d__1, d__2, d__3, d__4;
    /* Local variables */
     integer itmp1, itmp2, j, kfnew, klnew, kf, ji, kl, jp, jit;
     Treal tmp1, tmp2;
#define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1]
#define nab_ref(a_1,a_2) nab[(a_2)*nab_dim1 + a_1]

    nab_dim1 = *mmax;
    nab_offset = 1 + nab_dim1 * 1;
    nab -= nab_offset;
    ab_dim1 = *mmax;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --d__;
    --e;
    --e2;
    --nval;
    --c__;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    if (*ijob < 1 || *ijob > 3) {
	*info = -1;
	return 0;
    }

/*     Initialize NAB */

    if (*ijob == 1) {

/*        Compute the number of eigenvalues in the initial intervals. */

	*mout = 0;
/* DIR$ NOVECTOR */
	i__1 = *minp;
	for (ji = 1; ji <= i__1; ++ji) {
	    for (jp = 1; jp <= 2; ++jp) {
		tmp1 = d__[1] - ab_ref(ji, jp);
		if (absMACRO(tmp1) < *pivmin) {
		    tmp1 = -(*pivmin);
		}
		nab_ref(ji, jp) = 0;
		if (tmp1 <= 0.) {
		    nab_ref(ji, jp) = 1;
		}

		i__2 = *n;
		for (j = 2; j <= i__2; ++j) {
		    tmp1 = d__[j] - e2[j - 1] / tmp1 - ab_ref(ji, jp);
		    if (absMACRO(tmp1) < *pivmin) {
			tmp1 = -(*pivmin);
		    }
		    if (tmp1 <= 0.) {
			nab_ref(ji, jp) = nab_ref(ji, jp) + 1;
		    }
/* L10: */
		}
/* L20: */
	    }
	    *mout = *mout + nab_ref(ji, 2) - nab_ref(ji, 1);
/* L30: */
	}
	return 0;
    }

/*     Initialize for loop   

       KF and KL have the following meaning:   
          Intervals 1,...,KF-1 have converged.   
          Intervals KF,...,KL  still need to be refined. */

    kf = 1;
    kl = *minp;

/*     If IJOB=2, initialize C.   
       If IJOB=3, use the user-supplied starting point. */

    if (*ijob == 2) {
	i__1 = *minp;
	for (ji = 1; ji <= i__1; ++ji) {
	    c__[ji] = (ab_ref(ji, 1) + ab_ref(ji, 2)) * .5;
/* L40: */
	}
    }

/*     Iteration loop */

    i__1 = *nitmax;
    for (jit = 1; jit <= i__1; ++jit) {

/*        Loop over intervals */

	if (kl - kf + 1 >= *nbmin && *nbmin > 0) {

/*           Begin of Parallel Version of the loop */

	    i__2 = kl;
	    for (ji = kf; ji <= i__2; ++ji) {

/*              Compute N(c), the number of eigenvalues less than c */

		work[ji] = d__[1] - c__[ji];
		iwork[ji] = 0;
		if (work[ji] <= *pivmin) {
		    iwork[ji] = 1;
/* Computing MIN */
		    d__1 = work[ji], d__2 = -(*pivmin);
		    work[ji] = minMACRO(d__1,d__2);
		}

		i__3 = *n;
		for (j = 2; j <= i__3; ++j) {
		    work[ji] = d__[j] - e2[j - 1] / work[ji] - c__[ji];
		    if (work[ji] <= *pivmin) {
			++iwork[ji];
/* Computing MIN */
			d__1 = work[ji], d__2 = -(*pivmin);
			work[ji] = minMACRO(d__1,d__2);
		    }
/* L50: */
		}
/* L60: */
	    }

	    if (*ijob <= 2) {

/*              IJOB=2: Choose all intervals containing eigenvalues. */

		klnew = kl;
		i__2 = kl;
		for (ji = kf; ji <= i__2; ++ji) {

/*                 Insure that N(w) is monotone   

   Computing MIN   
   Computing MAX */
		    i__5 = nab_ref(ji, 1), i__6 = iwork[ji];
		    i__3 = nab_ref(ji, 2), i__4 = maxMACRO(i__5,i__6);
		    iwork[ji] = minMACRO(i__3,i__4);

/*                 Update the Queue -- add intervals if both halves   
                   contain eigenvalues. */

		    if (iwork[ji] == nab_ref(ji, 2)) {

/*                    No eigenvalue in the upper interval:   
                      just use the lower interval. */

			ab_ref(ji, 2) = c__[ji];

		    } else if (iwork[ji] == nab_ref(ji, 1)) {

/*                    No eigenvalue in the lower interval:   
                      just use the upper interval. */

			ab_ref(ji, 1) = c__[ji];
		    } else {
			++klnew;
			if (klnew <= *mmax) {

/*                       Eigenvalue in both intervals -- add upper to   
                         queue. */

			    ab_ref(klnew, 2) = ab_ref(ji, 2);
			    nab_ref(klnew, 2) = nab_ref(ji, 2);
			    ab_ref(klnew, 1) = c__[ji];
			    nab_ref(klnew, 1) = iwork[ji];
			    ab_ref(ji, 2) = c__[ji];
			    nab_ref(ji, 2) = iwork[ji];
			} else {
			    *info = *mmax + 1;
			}
		    }
/* L70: */
		}
		if (*info != 0) {
		    return 0;
		}
		kl = klnew;
	    } else {

/*              IJOB=3: Binary search.  Keep only the interval containing   
                        w   s.t. N(w) = NVAL */

		i__2 = kl;
		for (ji = kf; ji <= i__2; ++ji) {
		    if (iwork[ji] <= nval[ji]) {
			ab_ref(ji, 1) = c__[ji];
			nab_ref(ji, 1) = iwork[ji];
		    }
		    if (iwork[ji] >= nval[ji]) {
			ab_ref(ji, 2) = c__[ji];
			nab_ref(ji, 2) = iwork[ji];
		    }
/* L80: */
		}
	    }

	} else {

/*           End of Parallel Version of the loop   

             Begin of Serial Version of the loop */

	    klnew = kl;
	    i__2 = kl;
	    for (ji = kf; ji <= i__2; ++ji) {

/*              Compute N(w), the number of eigenvalues less than w */

		tmp1 = c__[ji];
		tmp2 = d__[1] - tmp1;
		itmp1 = 0;
		if (tmp2 <= *pivmin) {
		    itmp1 = 1;
/* Computing MIN */
		    d__1 = tmp2, d__2 = -(*pivmin);
		    tmp2 = minMACRO(d__1,d__2);
		}

/*              A series of compiler directives to defeat vectorization   
                for the next loop   

   $PL$ CMCHAR=' '   
   DIR$          NEXTSCALAR   
   $DIR          SCALAR   
   DIR$          NEXT SCALAR   
   VD$L          NOVECTOR   
   DEC$          NOVECTOR   
   VD$           NOVECTOR   
   VDIR          NOVECTOR   
   VOCL          LOOP,SCALAR   
   IBM           PREFER SCALAR   
   $PL$ CMCHAR='*' */

		i__3 = *n;
		for (j = 2; j <= i__3; ++j) {
		    tmp2 = d__[j] - e2[j - 1] / tmp2 - tmp1;
		    if (tmp2 <= *pivmin) {
			++itmp1;
/* Computing MIN */
			d__1 = tmp2, d__2 = -(*pivmin);
			tmp2 = minMACRO(d__1,d__2);
		    }
/* L90: */
		}

		if (*ijob <= 2) {

/*                 IJOB=2: Choose all intervals containing eigenvalues.   

                   Insure that N(w) is monotone   

   Computing MIN   
   Computing MAX */
		    i__5 = nab_ref(ji, 1);
		    i__3 = nab_ref(ji, 2), i__4 = maxMACRO(i__5,itmp1);
		    itmp1 = minMACRO(i__3,i__4);

/*                 Update the Queue -- add intervals if both halves   
                   contain eigenvalues. */

		    if (itmp1 == nab_ref(ji, 2)) {

/*                    No eigenvalue in the upper interval:   
                      just use the lower interval. */

			ab_ref(ji, 2) = tmp1;

		    } else if (itmp1 == nab_ref(ji, 1)) {

/*                    No eigenvalue in the lower interval:   
                      just use the upper interval. */

			ab_ref(ji, 1) = tmp1;
		    } else if (klnew < *mmax) {

/*                    Eigenvalue in both intervals -- add upper to queue. */

			++klnew;
			ab_ref(klnew, 2) = ab_ref(ji, 2);
			nab_ref(klnew, 2) = nab_ref(ji, 2);
			ab_ref(klnew, 1) = tmp1;
			nab_ref(klnew, 1) = itmp1;
			ab_ref(ji, 2) = tmp1;
			nab_ref(ji, 2) = itmp1;
		    } else {
			*info = *mmax + 1;
			return 0;
		    }
		} else {

/*                 IJOB=3: Binary search.  Keep only the interval   
                           containing  w  s.t. N(w) = NVAL */

		    if (itmp1 <= nval[ji]) {
			ab_ref(ji, 1) = tmp1;
			nab_ref(ji, 1) = itmp1;
		    }
		    if (itmp1 >= nval[ji]) {
			ab_ref(ji, 2) = tmp1;
			nab_ref(ji, 2) = itmp1;
		    }
		}
/* L100: */
	    }
	    kl = klnew;

/*           End of Serial Version of the loop */

	}

/*        Check for convergence */

	kfnew = kf;
	i__2 = kl;
	for (ji = kf; ji <= i__2; ++ji) {
	    tmp1 = (d__1 = ab_ref(ji, 2) - ab_ref(ji, 1), absMACRO(d__1));
/* Computing MAX */
	    d__3 = (d__1 = ab_ref(ji, 2), absMACRO(d__1)), d__4 = (d__2 = ab_ref(
		    ji, 1), absMACRO(d__2));
	    tmp2 = maxMACRO(d__3,d__4);
/* Computing MAX */
	    d__1 = maxMACRO(*abstol,*pivmin), d__2 = *reltol * tmp2;
	    if (tmp1 < maxMACRO(d__1,d__2) || nab_ref(ji, 1) >= nab_ref(ji, 2)) {

/*              Converged -- Swap with position KFNEW,   
                             then increment KFNEW */

		if (ji > kfnew) {
		    tmp1 = ab_ref(ji, 1);
		    tmp2 = ab_ref(ji, 2);
		    itmp1 = nab_ref(ji, 1);
		    itmp2 = nab_ref(ji, 2);
		    ab_ref(ji, 1) = ab_ref(kfnew, 1);
		    ab_ref(ji, 2) = ab_ref(kfnew, 2);
		    nab_ref(ji, 1) = nab_ref(kfnew, 1);
		    nab_ref(ji, 2) = nab_ref(kfnew, 2);
		    ab_ref(kfnew, 1) = tmp1;
		    ab_ref(kfnew, 2) = tmp2;
		    nab_ref(kfnew, 1) = itmp1;
		    nab_ref(kfnew, 2) = itmp2;
		    if (*ijob == 3) {
			itmp1 = nval[ji];
			nval[ji] = nval[kfnew];
			nval[kfnew] = itmp1;
		    }
		}
		++kfnew;
	    }
/* L110: */
	}
	kf = kfnew;

/*        Choose Midpoints */

	i__2 = kl;
	for (ji = kf; ji <= i__2; ++ji) {
	    c__[ji] = (ab_ref(ji, 1) + ab_ref(ji, 2)) * .5;
/* L120: */
	}

/*        If no more intervals to refine, quit. */

	if (kf > kl) {
	    goto L140;
	}
/* L130: */
    }

/*     Converged */

L140:
/* Computing MAX */
    i__1 = kl + 1 - kf;
    *info = maxMACRO(i__1,0);
    *mout = kl;

    return 0;

/*     End of DLAEBZ */

} /* dlaebz_ */

#undef nab_ref
#undef ab_ref


#endif