File: template_lapack_laln2.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (588 lines) | stat: -rw-r--r-- 17,515 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LALN2_HEADER
#define TEMPLATE_LAPACK_LALN2_HEADER


template<class Treal>
int template_lapack_laln2(const logical *ltrans, const integer *na, const integer *nw, 
	const Treal *smin, const Treal *ca, const Treal *a, const integer *lda, 
	const Treal *d1, const Treal *d2, const Treal *b, const integer *ldb, 
	const Treal *wr, const Treal *wi, Treal *x, const integer *ldx, 
	Treal *scale, Treal *xnorm, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLALN2 solves a system of the form  (ca A - w D ) X = s B   
    or (ca A' - w D) X = s B   with possible scaling ("s") and   
    perturbation of A.  (A' means A-transpose.)   

    A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA   
    real diagonal matrix, w is a real or complex value, and X and B are   
    NA x 1 matrices -- real if w is real, complex if w is complex.  NA   
    may be 1 or 2.   

    If w is complex, X and B are represented as NA x 2 matrices,   
    the first column of each being the real part and the second   
    being the imaginary part.   

    "s" is a scaling factor (.LE. 1), computed by DLALN2, which is   
    so chosen that X can be computed without overflow.  X is further   
    scaled if necessary to assure that norm(ca A - w D)*norm(X) is less   
    than overflow.   

    If both singular values of (ca A - w D) are less than SMIN,   
    SMIN*identity will be used instead of (ca A - w D).  If only one   
    singular value is less than SMIN, one element of (ca A - w D) will be   
    perturbed enough to make the smallest singular value roughly SMIN.   
    If both singular values are at least SMIN, (ca A - w D) will not be   
    perturbed.  In any case, the perturbation will be at most some small   
    multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values   
    are computed by infinity-norm approximations, and thus will only be   
    correct to a factor of 2 or so.   

    Note: all input quantities are assumed to be smaller than overflow   
    by a reasonable factor.  (See BIGNUM.)   

    Arguments   
    ==========   

    LTRANS  (input) LOGICAL   
            =.TRUE.:  A-transpose will be used.   
            =.FALSE.: A will be used (not transposed.)   

    NA      (input) INTEGER   
            The size of the matrix A.  It may (only) be 1 or 2.   

    NW      (input) INTEGER   
            1 if "w" is real, 2 if "w" is complex.  It may only be 1   
            or 2.   

    SMIN    (input) DOUBLE PRECISION   
            The desired lower bound on the singular values of A.  This   
            should be a safe distance away from underflow or overflow,   
            say, between (underflow/machine precision) and  (machine   
            precision * overflow ).  (See BIGNUM and ULP.)   

    CA      (input) DOUBLE PRECISION   
            The coefficient c, which A is multiplied by.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,NA)   
            The NA x NA matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of A.  It must be at least NA.   

    D1      (input) DOUBLE PRECISION   
            The 1,1 element in the diagonal matrix D.   

    D2      (input) DOUBLE PRECISION   
            The 2,2 element in the diagonal matrix D.  Not used if NW=1.   

    B       (input) DOUBLE PRECISION array, dimension (LDB,NW)   
            The NA x NW matrix B (right-hand side).  If NW=2 ("w" is   
            complex), column 1 contains the real part of B and column 2   
            contains the imaginary part.   

    LDB     (input) INTEGER   
            The leading dimension of B.  It must be at least NA.   

    WR      (input) DOUBLE PRECISION   
            The real part of the scalar "w".   

    WI      (input) DOUBLE PRECISION   
            The imaginary part of the scalar "w".  Not used if NW=1.   

    X       (output) DOUBLE PRECISION array, dimension (LDX,NW)   
            The NA x NW matrix X (unknowns), as computed by DLALN2.   
            If NW=2 ("w" is complex), on exit, column 1 will contain   
            the real part of X and column 2 will contain the imaginary   
            part.   

    LDX     (input) INTEGER   
            The leading dimension of X.  It must be at least NA.   

    SCALE   (output) DOUBLE PRECISION   
            The scale factor that B must be multiplied by to insure   
            that overflow does not occur when computing X.  Thus,   
            (ca A - w D) X  will be SCALE*B, not B (ignoring   
            perturbations of A.)  It will be at most 1.   

    XNORM   (output) DOUBLE PRECISION   
            The infinity-norm of X, when X is regarded as an NA x NW   
            real matrix.   

    INFO    (output) INTEGER   
            An error flag.  It will be set to zero if no error occurs,   
            a negative number if an argument is in error, or a positive   
            number if  ca A - w D  had to be perturbed.   
            The possible values are:   
            = 0: No error occurred, and (ca A - w D) did not have to be   
                   perturbed.   
            = 1: (ca A - w D) had to be perturbed to make its smallest   
                 (or only) singular value greater than SMIN.   
            NOTE: In the interests of speed, this routine does not   
                  check the inputs for errors.   

   =====================================================================   

       Parameter adjustments */
    /* Initialized data */
     logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
     logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
     integer ipivot[16]	/* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
	    4,3,2,1 };
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
    Treal d__1, d__2, d__3, d__4, d__5, d__6;
     Treal equiv_0[4], equiv_1[4];
    /* Local variables */
     Treal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
     integer j;
     Treal u22abs;
     integer icmax;
     Treal bnorm, cnorm, smini;
#define ci (equiv_0)
#define cr (equiv_1)
     Treal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, 
	    ci21, ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
#define civ (equiv_0)
     Treal csr, ur11, ur12, ur22;
#define crv (equiv_1)
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]
#define ci_ref(a_1,a_2) ci[(a_2)*2 + a_1 - 3]
#define cr_ref(a_1,a_2) cr[(a_2)*2 + a_1 - 3]
#define ipivot_ref(a_1,a_2) ipivot[(a_2)*4 + a_1 - 5]

    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;

    /* Function Body   

       Compute BIGNUM */

    smlnum = 2. * template_lapack_lamch("Safe minimum", (Treal)0);
    bignum = 1. / smlnum;
    smini = maxMACRO(*smin,smlnum);

/*     Don't check for input errors */

    *info = 0;

/*     Standard Initializations */

    *scale = 1.;

    if (*na == 1) {

/*        1 x 1  (i.e., scalar) system   C X = B */

	if (*nw == 1) {

/*           Real 1x1 system.   

             C = ca A - w D */

	    csr = *ca * a_ref(1, 1) - *wr * *d1;
	    cnorm = absMACRO(csr);

/*           If | C | < SMINI, use C = SMINI */

	    if (cnorm < smini) {
		csr = smini;
		cnorm = smini;
		*info = 1;
	    }

/*           Check scaling for  X = B / C */

	    bnorm = (d__1 = b_ref(1, 1), absMACRO(d__1));
	    if (cnorm < 1. && bnorm > 1.) {
		if (bnorm > bignum * cnorm) {
		    *scale = 1. / bnorm;
		}
	    }

/*           Compute X */

	    x_ref(1, 1) = b_ref(1, 1) * *scale / csr;
	    *xnorm = (d__1 = x_ref(1, 1), absMACRO(d__1));
	} else {

/*           Complex 1x1 system (w is complex)   

             C = ca A - w D */

	    csr = *ca * a_ref(1, 1) - *wr * *d1;
	    csi = -(*wi) * *d1;
	    cnorm = absMACRO(csr) + absMACRO(csi);

/*           If | C | < SMINI, use C = SMINI */

	    if (cnorm < smini) {
		csr = smini;
		csi = 0.;
		cnorm = smini;
		*info = 1;
	    }

/*           Check scaling for  X = B / C */

	    bnorm = (d__1 = b_ref(1, 1), absMACRO(d__1)) + (d__2 = b_ref(1, 2), 
		    absMACRO(d__2));
	    if (cnorm < 1. && bnorm > 1.) {
		if (bnorm > bignum * cnorm) {
		    *scale = 1. / bnorm;
		}
	    }

/*           Compute X */

	    d__1 = *scale * b_ref(1, 1);
	    d__2 = *scale * b_ref(1, 2);
	    template_lapack_ladiv(&d__1, &d__2, &csr, &csi, &x_ref(1, 1), &x_ref(1, 2));
	    *xnorm = (d__1 = x_ref(1, 1), absMACRO(d__1)) + (d__2 = x_ref(1, 2), 
		    absMACRO(d__2));
	}

    } else {

/*        2x2 System   

          Compute the real part of  C = ca A - w D  (or  ca A' - w D ) */

	cr_ref(1, 1) = *ca * a_ref(1, 1) - *wr * *d1;
	cr_ref(2, 2) = *ca * a_ref(2, 2) - *wr * *d2;
	if (*ltrans) {
	    cr_ref(1, 2) = *ca * a_ref(2, 1);
	    cr_ref(2, 1) = *ca * a_ref(1, 2);
	} else {
	    cr_ref(2, 1) = *ca * a_ref(2, 1);
	    cr_ref(1, 2) = *ca * a_ref(1, 2);
	}

	if (*nw == 1) {

/*           Real 2x2 system  (w is real)   

             Find the largest element in C */

	    cmax = 0.;
	    icmax = 0;

	    for (j = 1; j <= 4; ++j) {
		if ((d__1 = crv[j - 1], absMACRO(d__1)) > cmax) {
		    cmax = (d__1 = crv[j - 1], absMACRO(d__1));
		    icmax = j;
		}
/* L10: */
	    }

/*           If norm(C) < SMINI, use SMINI*identity. */

	    if (cmax < smini) {
/* Computing MAX */
		d__3 = (d__1 = b_ref(1, 1), absMACRO(d__1)), d__4 = (d__2 = b_ref(
			2, 1), absMACRO(d__2));
		bnorm = maxMACRO(d__3,d__4);
		if (smini < 1. && bnorm > 1.) {
		    if (bnorm > bignum * smini) {
			*scale = 1. / bnorm;
		    }
		}
		temp = *scale / smini;
		x_ref(1, 1) = temp * b_ref(1, 1);
		x_ref(2, 1) = temp * b_ref(2, 1);
		*xnorm = temp * bnorm;
		*info = 1;
		return 0;
	    }

/*           Gaussian elimination with complete pivoting. */

	    ur11 = crv[icmax - 1];
	    cr21 = crv[ipivot_ref(2, icmax) - 1];
	    ur12 = crv[ipivot_ref(3, icmax) - 1];
	    cr22 = crv[ipivot_ref(4, icmax) - 1];
	    ur11r = 1. / ur11;
	    lr21 = ur11r * cr21;
	    ur22 = cr22 - ur12 * lr21;

/*           If smaller pivot < SMINI, use SMINI */

	    if (absMACRO(ur22) < smini) {
		ur22 = smini;
		*info = 1;
	    }
	    if (rswap[icmax - 1]) {
		br1 = b_ref(2, 1);
		br2 = b_ref(1, 1);
	    } else {
		br1 = b_ref(1, 1);
		br2 = b_ref(2, 1);
	    }
	    br2 -= lr21 * br1;
/* Computing MAX */
	    d__2 = (d__1 = br1 * (ur22 * ur11r), absMACRO(d__1)), d__3 = absMACRO(br2);
	    bbnd = maxMACRO(d__2,d__3);
	    if (bbnd > 1. && absMACRO(ur22) < 1.) {
		if (bbnd >= bignum * absMACRO(ur22)) {
		    *scale = 1. / bbnd;
		}
	    }

	    xr2 = br2 * *scale / ur22;
	    xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
	    if (zswap[icmax - 1]) {
		x_ref(1, 1) = xr2;
		x_ref(2, 1) = xr1;
	    } else {
		x_ref(1, 1) = xr1;
		x_ref(2, 1) = xr2;
	    }
/* Computing MAX */
	    d__1 = absMACRO(xr1), d__2 = absMACRO(xr2);
	    *xnorm = maxMACRO(d__1,d__2);

/*           Further scaling if  norm(A) norm(X) > overflow */

	    if (*xnorm > 1. && cmax > 1.) {
		if (*xnorm > bignum / cmax) {
		    temp = cmax / bignum;
		    x_ref(1, 1) = temp * x_ref(1, 1);
		    x_ref(2, 1) = temp * x_ref(2, 1);
		    *xnorm = temp * *xnorm;
		    *scale = temp * *scale;
		}
	    }
	} else {

/*           Complex 2x2 system  (w is complex)   

             Find the largest element in C */

	    ci_ref(1, 1) = -(*wi) * *d1;
	    ci_ref(2, 1) = 0.;
	    ci_ref(1, 2) = 0.;
	    ci_ref(2, 2) = -(*wi) * *d2;
	    cmax = 0.;
	    icmax = 0;

	    for (j = 1; j <= 4; ++j) {
		if ((d__1 = crv[j - 1], absMACRO(d__1)) + (d__2 = civ[j - 1], absMACRO(
			d__2)) > cmax) {
		    cmax = (d__1 = crv[j - 1], absMACRO(d__1)) + (d__2 = civ[j - 1]
			    , absMACRO(d__2));
		    icmax = j;
		}
/* L20: */
	    }

/*           If norm(C) < SMINI, use SMINI*identity. */

	    if (cmax < smini) {
/* Computing MAX */
		d__5 = (d__1 = b_ref(1, 1), absMACRO(d__1)) + (d__2 = b_ref(1, 2), 
			absMACRO(d__2)), d__6 = (d__3 = b_ref(2, 1), absMACRO(d__3)) + (
			d__4 = b_ref(2, 2), absMACRO(d__4));
		bnorm = maxMACRO(d__5,d__6);
		if (smini < 1. && bnorm > 1.) {
		    if (bnorm > bignum * smini) {
			*scale = 1. / bnorm;
		    }
		}
		temp = *scale / smini;
		x_ref(1, 1) = temp * b_ref(1, 1);
		x_ref(2, 1) = temp * b_ref(2, 1);
		x_ref(1, 2) = temp * b_ref(1, 2);
		x_ref(2, 2) = temp * b_ref(2, 2);
		*xnorm = temp * bnorm;
		*info = 1;
		return 0;
	    }

/*           Gaussian elimination with complete pivoting. */

	    ur11 = crv[icmax - 1];
	    ui11 = civ[icmax - 1];
	    cr21 = crv[ipivot_ref(2, icmax) - 1];
	    ci21 = civ[ipivot_ref(2, icmax) - 1];
	    ur12 = crv[ipivot_ref(3, icmax) - 1];
	    ui12 = civ[ipivot_ref(3, icmax) - 1];
	    cr22 = crv[ipivot_ref(4, icmax) - 1];
	    ci22 = civ[ipivot_ref(4, icmax) - 1];
	    if (icmax == 1 || icmax == 4) {

/*              Code when off-diagonals of pivoted C are real */

		if (absMACRO(ur11) > absMACRO(ui11)) {
		    temp = ui11 / ur11;
/* Computing 2nd power */
		    d__1 = temp;
		    ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
		    ui11r = -temp * ur11r;
		} else {
		    temp = ur11 / ui11;
/* Computing 2nd power */
		    d__1 = temp;
		    ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
		    ur11r = -temp * ui11r;
		}
		lr21 = cr21 * ur11r;
		li21 = cr21 * ui11r;
		ur12s = ur12 * ur11r;
		ui12s = ur12 * ui11r;
		ur22 = cr22 - ur12 * lr21;
		ui22 = ci22 - ur12 * li21;
	    } else {

/*              Code when diagonals of pivoted C are real */

		ur11r = 1. / ur11;
		ui11r = 0.;
		lr21 = cr21 * ur11r;
		li21 = ci21 * ur11r;
		ur12s = ur12 * ur11r;
		ui12s = ui12 * ur11r;
		ur22 = cr22 - ur12 * lr21 + ui12 * li21;
		ui22 = -ur12 * li21 - ui12 * lr21;
	    }
	    u22abs = absMACRO(ur22) + absMACRO(ui22);

/*           If smaller pivot < SMINI, use SMINI */

	    if (u22abs < smini) {
		ur22 = smini;
		ui22 = 0.;
		*info = 1;
	    }
	    if (rswap[icmax - 1]) {
		br2 = b_ref(1, 1);
		br1 = b_ref(2, 1);
		bi2 = b_ref(1, 2);
		bi1 = b_ref(2, 2);
	    } else {
		br1 = b_ref(1, 1);
		br2 = b_ref(2, 1);
		bi1 = b_ref(1, 2);
		bi2 = b_ref(2, 2);
	    }
	    br2 = br2 - lr21 * br1 + li21 * bi1;
	    bi2 = bi2 - li21 * br1 - lr21 * bi1;
/* Computing MAX */
	    d__1 = (absMACRO(br1) + absMACRO(bi1)) * (u22abs * (absMACRO(ur11r) + absMACRO(ui11r))
		    ), d__2 = absMACRO(br2) + absMACRO(bi2);
	    bbnd = maxMACRO(d__1,d__2);
	    if (bbnd > 1. && u22abs < 1.) {
		if (bbnd >= bignum * u22abs) {
		    *scale = 1. / bbnd;
		    br1 = *scale * br1;
		    bi1 = *scale * bi1;
		    br2 = *scale * br2;
		    bi2 = *scale * bi2;
		}
	    }

	    template_lapack_ladiv(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
	    xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
	    xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
	    if (zswap[icmax - 1]) {
		x_ref(1, 1) = xr2;
		x_ref(2, 1) = xr1;
		x_ref(1, 2) = xi2;
		x_ref(2, 2) = xi1;
	    } else {
		x_ref(1, 1) = xr1;
		x_ref(2, 1) = xr2;
		x_ref(1, 2) = xi1;
		x_ref(2, 2) = xi2;
	    }
/* Computing MAX */
	    d__1 = absMACRO(xr1) + absMACRO(xi1), d__2 = absMACRO(xr2) + absMACRO(xi2);
	    *xnorm = maxMACRO(d__1,d__2);

/*           Further scaling if  norm(A) norm(X) > overflow */

	    if (*xnorm > 1. && cmax > 1.) {
		if (*xnorm > bignum / cmax) {
		    temp = cmax / bignum;
		    x_ref(1, 1) = temp * x_ref(1, 1);
		    x_ref(2, 1) = temp * x_ref(2, 1);
		    x_ref(1, 2) = temp * x_ref(1, 2);
		    x_ref(2, 2) = temp * x_ref(2, 2);
		    *xnorm = temp * *xnorm;
		    *scale = temp * *scale;
		}
	    }
	}
    }

    return 0;

/*     End of DLALN2 */

} /* dlaln2_ */

#undef ipivot_ref
#undef cr_ref
#undef ci_ref
#undef x_ref
#undef b_ref
#undef a_ref
#undef crv
#undef civ
#undef cr
#undef ci


#endif