File: template_lapack_lanhs.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (218 lines) | stat: -rw-r--r-- 6,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LANHS_HEADER
#define TEMPLATE_LAPACK_LANHS_HEADER


template<class Treal>
Treal dlanhs_(const char *norm, const integer *n, const Treal *a, const integer *lda, 
	Treal *work)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLANHS  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the  element of  largest absolute value  of a   
    Hessenberg matrix A.   

    Description   
    ===========   

    DLANHS returns the value   

       DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in DLANHS as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, DLANHS is   
            set to zero.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            The n by n upper Hessenberg matrix A; the part of A below the   
            first sub-diagonal is not referenced.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(N,1).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I'; otherwise, WORK is not   
            referenced.   

   =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    Treal ret_val, d__1, d__2, d__3;
    /* Local variables */
     integer i__, j;
     Treal scale;
     Treal value;
     Treal sum;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;

    /* Initialization added by Elias to get rid of compiler warnings. */
    value = 0;
    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (template_blas_lsame(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = minMACRO(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__2 = value, d__3 = (d__1 = a_ref(i__, j), absMACRO(d__1));
		value = maxMACRO(d__2,d__3);
/* L10: */
	    }
/* L20: */
	}
    } else if (template_blas_lsame(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    sum = 0.;
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = minMACRO(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		sum += (d__1 = a_ref(i__, j), absMACRO(d__1));
/* L30: */
	    }
	    value = maxMACRO(value,sum);
/* L40: */
	}
    } else if (template_blas_lsame(norm, "I")) {

/*        Find normI(A). */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    work[i__] = 0.;
/* L50: */
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = minMACRO(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		work[i__] += (d__1 = a_ref(i__, j), absMACRO(d__1));
/* L60: */
	    }
/* L70: */
	}
	value = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = maxMACRO(d__1,d__2);
/* L80: */
	}
    } else if (template_blas_lsame(norm, "F") || template_blas_lsame(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = minMACRO(i__3,i__4);
	    template_lapack_lassq(&i__2, &a_ref(1, j), &c__1, &scale, &sum);
/* L90: */
	}
	value = scale * template_blas_sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of DLANHS */

} /* dlanhs_ */

#undef a_ref


#endif