1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LARNV_HEADER
#define TEMPLATE_LAPACK_LARNV_HEADER
template<class Treal>
int template_lapack_larnv(const integer *idist, integer *iseed, const integer *n,
Treal *x)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DLARNV returns a vector of n random real numbers from a uniform or
normal distribution.
Arguments
=========
IDIST (input) INTEGER
Specifies the distribution of the random numbers:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1)
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated.
X (output) DOUBLE PRECISION array, dimension (N)
The generated random numbers.
Further Details
===============
This routine calls the auxiliary routine DLARUV to generate random
real numbers from a uniform (0,1) distribution, in batches of up to
128 using vectorisable code. The Box-Muller method is used to
transform numbers from a uniform to a normal distribution.
=====================================================================
Parameter adjustments */
/* System generated locals */
integer i__1, i__2, i__3;
/* Local variables */
integer i__;
Treal u[128];
integer il, iv;
integer il2;
--x;
--iseed;
/* Function Body */
i__1 = *n;
for (iv = 1; iv <= i__1; iv += 64) {
/* Computing MIN */
i__2 = 64, i__3 = *n - iv + 1;
il = minMACRO(i__2,i__3);
if (*idist == 3) {
il2 = il << 1;
} else {
il2 = il;
}
/* Call DLARUV to generate IL2 numbers from a uniform (0,1)
distribution (IL2 <= LV) */
dlaruv_(&iseed[1], &il2, u);
if (*idist == 1) {
/* Copy generated numbers */
i__2 = il;
for (i__ = 1; i__ <= i__2; ++i__) {
x[iv + i__ - 1] = u[i__ - 1];
/* L10: */
}
} else if (*idist == 2) {
/* Convert generated numbers to uniform (-1,1) distribution */
i__2 = il;
for (i__ = 1; i__ <= i__2; ++i__) {
x[iv + i__ - 1] = u[i__ - 1] * 2. - 1.;
/* L20: */
}
} else if (*idist == 3) {
/* Convert generated numbers to normal (0,1) distribution */
i__2 = il;
for (i__ = 1; i__ <= i__2; ++i__) {
x[iv + i__ - 1] = template_blas_sqrt(template_blas_log(u[(i__ << 1) - 2]) * -2.) * template_blas_cos(u[(
i__ << 1) - 1] * 6.2831853071795864769252867663);
/* L30: */
}
}
/* L40: */
}
return 0;
/* End of DLARNV */
} /* dlarnv_ */
#endif
|