1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LARRK_HEADER
#define TEMPLATE_LAPACK_LARRK_HEADER
template<class Treal>
int template_lapack_larrk(integer *n, integer *iw, Treal *gl,
Treal *gu, Treal *d__, Treal *e2, Treal *pivmin,
Treal *reltol, Treal *w, Treal *werr, integer *info)
{
/* System generated locals */
integer i__1;
Treal d__1, d__2;
/* Local variables */
integer i__, it;
Treal mid, eps, tmp1, tmp2, left, atoli, right;
integer itmax;
Treal rtoli, tnorm;
integer negcnt;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLARRK computes one eigenvalue of a symmetric tridiagonal */
/* matrix T to suitable accuracy. This is an auxiliary code to be */
/* called from DSTEMR. */
/* To avoid overflow, the matrix must be scaled so that its */
/* largest element is no greater than overflow**(1/2) * */
/* underflow**(1/4) in absolute value, and for greatest */
/* accuracy, it should not be much smaller than that. */
/* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
/* Matrix", Report CS41, Computer Science Dept., Stanford */
/* University, July 21, 1966. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the tridiagonal matrix T. N >= 0. */
/* IW (input) INTEGER */
/* The index of the eigenvalues to be returned. */
/* GL (input) DOUBLE PRECISION */
/* GU (input) DOUBLE PRECISION */
/* An upper and a lower bound on the eigenvalue. */
/* D (input) DOUBLE PRECISION array, dimension (N) */
/* The n diagonal elements of the tridiagonal matrix T. */
/* E2 (input) DOUBLE PRECISION array, dimension (N-1) */
/* The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */
/* PIVMIN (input) DOUBLE PRECISION */
/* The minimum pivot allowed in the Sturm sequence for T. */
/* RELTOL (input) DOUBLE PRECISION */
/* The minimum relative width of an interval. When an interval */
/* is narrower than RELTOL times the larger (in */
/* magnitude) endpoint, then it is considered to be */
/* sufficiently small, i.e., converged. Note: this should */
/* always be at least radix*machine epsilon. */
/* W (output) DOUBLE PRECISION */
/* WERR (output) DOUBLE PRECISION */
/* The error bound on the corresponding eigenvalue approximation */
/* in W. */
/* INFO (output) INTEGER */
/* = 0: Eigenvalue converged */
/* = -1: Eigenvalue did NOT converge */
/* Internal Parameters */
/* =================== */
/* FUDGE DOUBLE PRECISION, default = 2 */
/* A "fudge factor" to widen the Gershgorin intervals. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Get machine constants */
/* Parameter adjustments */
--e2;
--d__;
/* Function Body */
eps = template_lapack_lamch("P", (Treal)0);
/* Computing MAX */
d__1 = absMACRO(*gl), d__2 = absMACRO(*gu);
tnorm = maxMACRO(d__1,d__2);
rtoli = *reltol;
atoli = *pivmin * 4.;
itmax = (integer) ((template_blas_log(tnorm + *pivmin) - template_blas_log(*pivmin)) / template_blas_log(2.)) + 2;
*info = -1;
left = *gl - tnorm * 2. * eps * *n - *pivmin * 4.;
right = *gu + tnorm * 2. * eps * *n + *pivmin * 4.;
it = 0;
L10:
/* Check if interval converged or maximum number of iterations reached */
tmp1 = (d__1 = right - left, absMACRO(d__1));
/* Computing MAX */
d__1 = absMACRO(right), d__2 = absMACRO(left);
tmp2 = maxMACRO(d__1,d__2);
/* Computing MAX */
d__1 = maxMACRO(atoli,*pivmin), d__2 = rtoli * tmp2;
if (tmp1 < maxMACRO(d__1,d__2)) {
*info = 0;
goto L30;
}
if (it > itmax) {
goto L30;
}
/* Count number of negative pivots for mid-point */
++it;
mid = (left + right) * .5;
negcnt = 0;
tmp1 = d__[1] - mid;
if (absMACRO(tmp1) < *pivmin) {
tmp1 = -(*pivmin);
}
if (tmp1 <= 0.) {
++negcnt;
}
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
tmp1 = d__[i__] - e2[i__ - 1] / tmp1 - mid;
if (absMACRO(tmp1) < *pivmin) {
tmp1 = -(*pivmin);
}
if (tmp1 <= 0.) {
++negcnt;
}
/* L20: */
}
if (negcnt >= *iw) {
right = mid;
} else {
left = mid;
}
goto L10;
L30:
/* Converged or maximum number of iterations reached */
*w = (left + right) * .5;
*werr = (d__1 = right - left, absMACRO(d__1)) * .5;
return 0;
/* End of DLARRK */
} /* dlarrk_ */
#endif
|