File: template_lapack_larrk.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (217 lines) | stat: -rw-r--r-- 6,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LARRK_HEADER
#define TEMPLATE_LAPACK_LARRK_HEADER

template<class Treal>
int template_lapack_larrk(integer *n, integer *iw, Treal *gl, 
	Treal *gu, Treal *d__, Treal *e2, Treal *pivmin, 
	Treal *reltol, Treal *w, Treal *werr, integer *info)
{
    /* System generated locals */
    integer i__1;
    Treal d__1, d__2;


    /* Local variables */
    integer i__, it;
    Treal mid, eps, tmp1, tmp2, left, atoli, right;
    integer itmax;
    Treal rtoli, tnorm;
    integer negcnt;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLARRK computes one eigenvalue of a symmetric tridiagonal */
/*  matrix T to suitable accuracy. This is an auxiliary code to be */
/*  called from DSTEMR. */

/*  To avoid overflow, the matrix must be scaled so that its */
/*  largest element is no greater than overflow**(1/2) * */
/*  underflow**(1/4) in absolute value, and for greatest */
/*  accuracy, it should not be much smaller than that. */

/*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
/*  Matrix", Report CS41, Computer Science Dept., Stanford */
/*  University, July 21, 1966. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the tridiagonal matrix T.  N >= 0. */

/*  IW      (input) INTEGER */
/*          The index of the eigenvalues to be returned. */

/*  GL      (input) DOUBLE PRECISION */
/*  GU      (input) DOUBLE PRECISION */
/*          An upper and a lower bound on the eigenvalue. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the tridiagonal matrix T. */

/*  E2      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */

/*  PIVMIN  (input) DOUBLE PRECISION */
/*          The minimum pivot allowed in the Sturm sequence for T. */

/*  RELTOL  (input) DOUBLE PRECISION */
/*          The minimum relative width of an interval.  When an interval */
/*          is narrower than RELTOL times the larger (in */
/*          magnitude) endpoint, then it is considered to be */
/*          sufficiently small, i.e., converged.  Note: this should */
/*          always be at least radix*machine epsilon. */

/*  W       (output) DOUBLE PRECISION */

/*  WERR    (output) DOUBLE PRECISION */
/*          The error bound on the corresponding eigenvalue approximation */
/*          in W. */

/*  INFO    (output) INTEGER */
/*          = 0:       Eigenvalue converged */
/*          = -1:      Eigenvalue did NOT converge */

/*  Internal Parameters */
/*  =================== */

/*  FUDGE   DOUBLE PRECISION, default = 2 */
/*          A "fudge factor" to widen the Gershgorin intervals. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Get machine constants */
    /* Parameter adjustments */
    --e2;
    --d__;

    /* Function Body */
    eps = template_lapack_lamch("P", (Treal)0);
/* Computing MAX */
    d__1 = absMACRO(*gl), d__2 = absMACRO(*gu);
    tnorm = maxMACRO(d__1,d__2);
    rtoli = *reltol;
    atoli = *pivmin * 4.;
    itmax = (integer) ((template_blas_log(tnorm + *pivmin) - template_blas_log(*pivmin)) / template_blas_log(2.)) + 2;
    *info = -1;
    left = *gl - tnorm * 2. * eps * *n - *pivmin * 4.;
    right = *gu + tnorm * 2. * eps * *n + *pivmin * 4.;
    it = 0;
L10:

/*     Check if interval converged or maximum number of iterations reached */

    tmp1 = (d__1 = right - left, absMACRO(d__1));
/* Computing MAX */
    d__1 = absMACRO(right), d__2 = absMACRO(left);
    tmp2 = maxMACRO(d__1,d__2);
/* Computing MAX */
    d__1 = maxMACRO(atoli,*pivmin), d__2 = rtoli * tmp2;
    if (tmp1 < maxMACRO(d__1,d__2)) {
	*info = 0;
	goto L30;
    }
    if (it > itmax) {
	goto L30;
    }

/*     Count number of negative pivots for mid-point */

    ++it;
    mid = (left + right) * .5;
    negcnt = 0;
    tmp1 = d__[1] - mid;
    if (absMACRO(tmp1) < *pivmin) {
	tmp1 = -(*pivmin);
    }
    if (tmp1 <= 0.) {
	++negcnt;
    }

    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	tmp1 = d__[i__] - e2[i__ - 1] / tmp1 - mid;
	if (absMACRO(tmp1) < *pivmin) {
	    tmp1 = -(*pivmin);
	}
	if (tmp1 <= 0.) {
	    ++negcnt;
	}
/* L20: */
    }
    if (negcnt >= *iw) {
	right = mid;
    } else {
	left = mid;
    }
    goto L10;
L30:

/*     Converged or maximum number of iterations reached */

    *w = (left + right) * .5;
    *werr = (d__1 = right - left, absMACRO(d__1)) * .5;
    return 0;

/*     End of DLARRK */

} /* dlarrk_ */

#endif