1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LATRS_HEADER
#define TEMPLATE_LAPACK_LATRS_HEADER
template<class Treal>
int template_lapack_latrs(const char *uplo, const char *trans, const char *diag, const char *
normin, const integer *n, const Treal *a, const integer *lda, Treal *x,
Treal *scale, Treal *cnorm, integer *info)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1992
Purpose
=======
DLATRS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A' denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max (1,N).
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
Treal c_b36 = .5;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
Treal d__1, d__2, d__3;
/* Local variables */
integer jinc;
Treal xbnd;
integer imax;
Treal tmax, tjjs, xmax, grow, sumj;
integer i__, j;
Treal tscal, uscal;
integer jlast;
logical upper;
Treal xj;
Treal bignum;
logical notran;
integer jfirst;
Treal smlnum;
logical nounit;
Treal rec, tjj;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--x;
--cnorm;
/* Function Body */
*info = 0;
upper = template_blas_lsame(uplo, "U");
notran = template_blas_lsame(trans, "N");
nounit = template_blas_lsame(diag, "N");
/* Test the input parameters. */
if (! upper && ! template_blas_lsame(uplo, "L")) {
*info = -1;
} else if (! notran && ! template_blas_lsame(trans, "T") && !
template_blas_lsame(trans, "C")) {
*info = -2;
} else if (! nounit && ! template_blas_lsame(diag, "U")) {
*info = -3;
} else if (! template_blas_lsame(normin, "Y") && ! template_blas_lsame(normin,
"N")) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < maxMACRO(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("LATRS ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Determine machine dependent parameters to control overflow. */
smlnum = template_lapack_lamch("Safe minimum", (Treal)0) / template_lapack_lamch("Precision", (Treal)0);
bignum = 1. / smlnum;
*scale = 1.;
if (template_blas_lsame(normin, "N")) {
/* Compute the 1-norm of each column, not including the diagonal. */
if (upper) {
/* A is upper triangular. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
cnorm[j] = template_blas_asum(&i__2, &a_ref(1, j), &c__1);
/* L10: */
}
} else {
/* A is lower triangular. */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *n - j;
cnorm[j] = template_blas_asum(&i__2, &a_ref(j + 1, j), &c__1);
/* L20: */
}
cnorm[*n] = 0.;
}
}
/* Scale the column norms by TSCAL if the maximum element in CNORM is
greater than BIGNUM. */
imax = template_blas_idamax(n, &cnorm[1], &c__1);
tmax = cnorm[imax];
if (tmax <= bignum) {
tscal = 1.;
} else {
tscal = 1. / (smlnum * tmax);
dscal_(n, &tscal, &cnorm[1], &c__1);
}
/* Compute a bound on the computed solution vector to see if the
Level 2 BLAS routine DTRSV can be used. */
j = template_blas_idamax(n, &x[1], &c__1);
xmax = (d__1 = x[j], absMACRO(d__1));
xbnd = xmax;
if (notran) {
/* Compute the growth in A * x = b. */
if (upper) {
jfirst = *n;
jlast = 1;
jinc = -1;
} else {
jfirst = 1;
jlast = *n;
jinc = 1;
}
if (tscal != 1.) {
grow = 0.;
goto L50;
}
if (nounit) {
/* A is non-unit triangular.
Compute GROW = 1/G(j) and XBND = 1/M(j).
Initially, G(0) = max{x(i), i=1,...,n}. */
grow = 1. / maxMACRO(xbnd,smlnum);
xbnd = grow;
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L50;
}
/* M(j) = G(j-1) / absMACRO(A(j,j)) */
tjj = (d__1 = a_ref(j, j), absMACRO(d__1));
/* Computing MIN */
d__1 = xbnd, d__2 = minMACRO(1.,tjj) * grow;
xbnd = minMACRO(d__1,d__2);
if (tjj + cnorm[j] >= smlnum) {
/* G(j) = G(j-1)*( 1 + CNORM(j) / absMACRO(A(j,j)) ) */
grow *= tjj / (tjj + cnorm[j]);
} else {
/* G(j) could overflow, set GROW to 0. */
grow = 0.;
}
/* L30: */
}
grow = xbnd;
} else {
/* A is unit triangular.
Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
Computing MIN */
d__1 = 1., d__2 = 1. / maxMACRO(xbnd,smlnum);
grow = minMACRO(d__1,d__2);
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L50;
}
/* G(j) = G(j-1)*( 1 + CNORM(j) ) */
grow *= 1. / (cnorm[j] + 1.);
/* L40: */
}
}
L50:
;
} else {
/* Compute the growth in A' * x = b. */
if (upper) {
jfirst = 1;
jlast = *n;
jinc = 1;
} else {
jfirst = *n;
jlast = 1;
jinc = -1;
}
if (tscal != 1.) {
grow = 0.;
goto L80;
}
if (nounit) {
/* A is non-unit triangular.
Compute GROW = 1/G(j) and XBND = 1/M(j).
Initially, M(0) = max{x(i), i=1,...,n}. */
grow = 1. / maxMACRO(xbnd,smlnum);
xbnd = grow;
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L80;
}
/* G(j) = maxMACRO( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
xj = cnorm[j] + 1.;
/* Computing MIN */
d__1 = grow, d__2 = xbnd / xj;
grow = minMACRO(d__1,d__2);
/* M(j) = M(j-1)*( 1 + CNORM(j) ) / absMACRO(A(j,j)) */
tjj = (d__1 = a_ref(j, j), absMACRO(d__1));
if (xj > tjj) {
xbnd *= tjj / xj;
}
/* L60: */
}
grow = minMACRO(grow,xbnd);
} else {
/* A is unit triangular.
Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
Computing MIN */
d__1 = 1., d__2 = 1. / maxMACRO(xbnd,smlnum);
grow = minMACRO(d__1,d__2);
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L80;
}
/* G(j) = ( 1 + CNORM(j) )*G(j-1) */
xj = cnorm[j] + 1.;
grow /= xj;
/* L70: */
}
}
L80:
;
}
if (grow * tscal > smlnum) {
/* Use the Level 2 BLAS solve if the reciprocal of the bound on
elements of X is not too small. */
template_blas_trsv(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1);
} else {
/* Use a Level 1 BLAS solve, scaling intermediate results. */
if (xmax > bignum) {
/* Scale X so that its components are less than or equal to
BIGNUM in absolute value. */
*scale = bignum / xmax;
dscal_(n, scale, &x[1], &c__1);
xmax = bignum;
}
if (notran) {
/* Solve A * x = b */
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
xj = (d__1 = x[j], absMACRO(d__1));
if (nounit) {
tjjs = a_ref(j, j) * tscal;
} else {
tjjs = tscal;
if (tscal == 1.) {
goto L100;
}
}
tjj = absMACRO(tjjs);
if (tjj > smlnum) {
/* absMACRO(A(j,j)) > SMLNUM: */
if (tjj < 1.) {
if (xj > tjj * bignum) {
/* Scale x by 1/b(j). */
rec = 1. / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j] /= tjjs;
xj = (d__1 = x[j], absMACRO(d__1));
} else if (tjj > 0.) {
/* 0 < absMACRO(A(j,j)) <= SMLNUM: */
if (xj > tjj * bignum) {
/* Scale x by (1/absMACRO(x(j)))*absMACRO(A(j,j))*BIGNUM
to avoid overflow when dividing by A(j,j). */
rec = tjj * bignum / xj;
if (cnorm[j] > 1.) {
/* Scale by 1/CNORM(j) to avoid overflow when
multiplying x(j) times column j. */
rec /= cnorm[j];
}
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
x[j] /= tjjs;
xj = (d__1 = x[j], absMACRO(d__1));
} else {
/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
scale = 0, and compute a solution to A*x = 0. */
i__3 = *n;
for (i__ = 1; i__ <= i__3; ++i__) {
x[i__] = 0.;
/* L90: */
}
x[j] = 1.;
xj = 1.;
*scale = 0.;
xmax = 0.;
}
L100:
/* Scale x if necessary to avoid overflow when adding a
multiple of column j of A. */
if (xj > 1.) {
rec = 1. / xj;
if (cnorm[j] > (bignum - xmax) * rec) {
/* Scale x by 1/(2*absMACRO(x(j))). */
rec *= .5;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
} else if (xj * cnorm[j] > bignum - xmax) {
/* Scale x by 1/2. */
dscal_(n, &c_b36, &x[1], &c__1);
*scale *= .5;
}
if (upper) {
if (j > 1) {
/* Compute the update
x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
i__3 = j - 1;
d__1 = -x[j] * tscal;
daxpy_(&i__3, &d__1, &a_ref(1, j), &c__1, &x[1], &
c__1);
i__3 = j - 1;
i__ = template_blas_idamax(&i__3, &x[1], &c__1);
xmax = (d__1 = x[i__], absMACRO(d__1));
}
} else {
if (j < *n) {
/* Compute the update
x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
i__3 = *n - j;
d__1 = -x[j] * tscal;
daxpy_(&i__3, &d__1, &a_ref(j + 1, j), &c__1, &x[j +
1], &c__1);
i__3 = *n - j;
i__ = j + template_blas_idamax(&i__3, &x[j + 1], &c__1);
xmax = (d__1 = x[i__], absMACRO(d__1));
}
}
/* L110: */
}
} else {
/* Solve A' * x = b */
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Compute x(j) = b(j) - sum A(k,j)*x(k).
k<>j */
xj = (d__1 = x[j], absMACRO(d__1));
uscal = tscal;
rec = 1. / maxMACRO(xmax,1.);
if (cnorm[j] > (bignum - xj) * rec) {
/* If x(j) could overflow, scale x by 1/(2*XMAX). */
rec *= .5;
if (nounit) {
tjjs = a_ref(j, j) * tscal;
} else {
tjjs = tscal;
}
tjj = absMACRO(tjjs);
if (tjj > 1.) {
/* Divide by A(j,j) when scaling x if A(j,j) > 1.
Computing MIN */
d__1 = 1., d__2 = rec * tjj;
rec = minMACRO(d__1,d__2);
uscal /= tjjs;
}
if (rec < 1.) {
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
sumj = 0.;
if (uscal == 1.) {
/* If the scaling needed for A in the dot product is 1,
call DDOT to perform the dot product. */
if (upper) {
i__3 = j - 1;
sumj = ddot_(&i__3, &a_ref(1, j), &c__1, &x[1], &c__1)
;
} else if (j < *n) {
i__3 = *n - j;
sumj = ddot_(&i__3, &a_ref(j + 1, j), &c__1, &x[j + 1]
, &c__1);
}
} else {
/* Otherwise, use in-line code for the dot product. */
if (upper) {
i__3 = j - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
sumj += a_ref(i__, j) * uscal * x[i__];
/* L120: */
}
} else if (j < *n) {
i__3 = *n;
for (i__ = j + 1; i__ <= i__3; ++i__) {
sumj += a_ref(i__, j) * uscal * x[i__];
/* L130: */
}
}
}
if (uscal == tscal) {
/* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
was not used to scale the dotproduct. */
x[j] -= sumj;
xj = (d__1 = x[j], absMACRO(d__1));
if (nounit) {
tjjs = a_ref(j, j) * tscal;
} else {
tjjs = tscal;
if (tscal == 1.) {
goto L150;
}
}
/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
tjj = absMACRO(tjjs);
if (tjj > smlnum) {
/* absMACRO(A(j,j)) > SMLNUM: */
if (tjj < 1.) {
if (xj > tjj * bignum) {
/* Scale X by 1/absMACRO(x(j)). */
rec = 1. / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j] /= tjjs;
} else if (tjj > 0.) {
/* 0 < absMACRO(A(j,j)) <= SMLNUM: */
if (xj > tjj * bignum) {
/* Scale x by (1/absMACRO(x(j)))*absMACRO(A(j,j))*BIGNUM. */
rec = tjj * bignum / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
x[j] /= tjjs;
} else {
/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
scale = 0, and compute a solution to A'*x = 0. */
i__3 = *n;
for (i__ = 1; i__ <= i__3; ++i__) {
x[i__] = 0.;
/* L140: */
}
x[j] = 1.;
*scale = 0.;
xmax = 0.;
}
L150:
;
} else {
/* Compute x(j) := x(j) / A(j,j) - sumj if the dot
product has already been divided by 1/A(j,j). */
x[j] = x[j] / tjjs - sumj;
}
/* Computing MAX */
d__2 = xmax, d__3 = (d__1 = x[j], absMACRO(d__1));
xmax = maxMACRO(d__2,d__3);
/* L160: */
}
}
*scale /= tscal;
}
/* Scale the column norms by 1/TSCAL for return. */
if (tscal != 1.) {
d__1 = 1. / tscal;
dscal_(n, &d__1, &cnorm[1], &c__1);
}
return 0;
/* End of DLATRS */
} /* dlatrs_ */
#undef a_ref
#endif
|