File: template_lapack_pocon.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (217 lines) | stat: -rw-r--r-- 6,389 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_POCON_HEADER
#define TEMPLATE_LAPACK_POCON_HEADER


template<class Treal>
int template_lapack_pocon(const char *uplo, const integer *n, const Treal *a, const integer *
	lda, const Treal *anorm, Treal *rcond, Treal *work, integer *
	iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DPOCON estimates the reciprocal of the condition number (in the   
    1-norm) of a real symmetric positive definite matrix using the   
    Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            The triangular factor U or L from the Cholesky factorization   
            A = U**T*U or A = L*L**T, as computed by DPOTRF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    ANORM   (input) DOUBLE PRECISION   
            The 1-norm (or infinity-norm) of the symmetric matrix A.   

    RCOND   (output) DOUBLE PRECISION   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an   
            estimate of the 1-norm of inv(A) computed in this routine.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    Treal d__1;
    /* Local variables */
     integer kase;
     Treal scale;
     logical upper;
     integer ix;
     Treal scalel;
     Treal scaleu;
     Treal ainvnm;
     char normin[1];
     Treal smlnum;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = template_blas_lsame(uplo, "U");
    if (! upper && ! template_blas_lsame(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -4;
    } else if (*anorm < 0.) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("POCON ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.;
    if (*n == 0) {
	*rcond = 1.;
	return 0;
    } else if (*anorm == 0.) {
	return 0;
    }

    smlnum = template_lapack_lamch("Safe minimum", (Treal)0);

/*     Estimate the 1-norm of inv(A). */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    template_lapack_lacon(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    template_lapack_latrs("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset],
		     lda, &work[1], &scalel, &work[(*n << 1) + 1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    template_lapack_latrs("Upper", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scaleu, &work[(*n << 1) + 1], 
		    info);
	} else {

/*           Multiply by inv(L). */

	    template_lapack_latrs("Lower", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scalel, &work[(*n << 1) + 1], 
		    info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    template_lapack_latrs("Lower", "Transpose", "Non-unit", normin, n, &a[a_offset],
		     lda, &work[1], &scaleu, &work[(*n << 1) + 1], info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.) {
	    ix = template_blas_idamax(n, &work[1], &c__1);
	    if (scale < (d__1 = work[ix], absMACRO(d__1)) * smlnum || scale == 0.) 
		    {
		goto L20;
	    }
	    template_lapack_rscl(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.) {
	*rcond = 1. / ainvnm / *anorm;
    }

L20:
    return 0;

/*     End of DPOCON */

} /* dpocon_ */

#endif