File: template_lapack_sterf.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (461 lines) | stat: -rw-r--r-- 10,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_STERF_HEADER
#define TEMPLATE_LAPACK_STERF_HEADER

#include "template_lapack_common.h"

template<class Treal>
int template_lapack_sterf(const integer *n, Treal *d__, Treal *e, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSTERF computes all eigenvalues of a symmetric tridiagonal matrix   
    using the Pal-Walker-Kahan variant of the QL or QR algorithm.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the n diagonal elements of the tridiagonal matrix.   
            On exit, if INFO = 0, the eigenvalues in ascending order.   

    E       (input/output) DOUBLE PRECISION array, dimension (N-1)   
            On entry, the (n-1) subdiagonal elements of the tridiagonal   
            matrix.   
            On exit, E has been destroyed.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  the algorithm failed to find all of the eigenvalues in   
                  a total of 30*N iterations; if INFO = i, then i   
                  elements of E have not converged to zero.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__0 = 0;
     integer c__1 = 1;
     Treal c_b32 = 1.;
    
    /* System generated locals */
    integer i__1;
    Treal d__1, d__2, d__3;
    /* Local variables */
     Treal oldc;
     integer lend, jtot;
     Treal c__;
     integer i__, l, m;
     Treal p, gamma, r__, s, alpha, sigma, anorm;
     integer l1;
     Treal bb;
     integer iscale;
     Treal oldgam, safmin;
     Treal safmax;
     integer lendsv;
     Treal ssfmin;
     integer nmaxit;
     Treal ssfmax, rt1, rt2, eps, rte;
     integer lsv;
     Treal eps2;


    --e;
    --d__;

    /* Function Body */
    *info = 0;

/*     Quick return if possible */

    if (*n < 0) {
	*info = -1;
	i__1 = -(*info);
	template_blas_erbla("STERF ", &i__1);
	return 0;
    }
    if (*n <= 1) {
	return 0;
    }

/*     Determine the unit roundoff for this environment. */

    eps = template_lapack_lamch("E", (Treal)0);
/* Computing 2nd power */
    d__1 = eps;
    eps2 = d__1 * d__1;
    safmin = template_lapack_lamch("S", (Treal)0);
    safmax = 1. / safmin;
    ssfmax = template_blas_sqrt(safmax) / 3.;
    ssfmin = template_blas_sqrt(safmin) / eps2;

/*     Compute the eigenvalues of the tridiagonal matrix. */

    nmaxit = *n * 30;
    sigma = 0.;
    jtot = 0;

/*     Determine where the matrix splits and choose QL or QR iteration   
       for each block, according to whether top or bottom diagonal   
       element is smaller. */

    l1 = 1;

L10:
    if (l1 > *n) {
	goto L170;
    }
    if (l1 > 1) {
	e[l1 - 1] = 0.;
    }
    i__1 = *n - 1;
    for (m = l1; m <= i__1; ++m) {
	if ((d__3 = e[m], absMACRO(d__3)) <= template_blas_sqrt((d__1 = d__[m], absMACRO(d__1))) * 
		template_blas_sqrt((d__2 = d__[m + 1], absMACRO(d__2))) * eps) {
	    e[m] = 0.;
	    goto L30;
	}
/* L20: */
    }
    m = *n;

L30:
    l = l1;
    lsv = l;
    lend = m;
    lendsv = lend;
    l1 = m + 1;
    if (lend == l) {
	goto L10;
    }

/*     Scale submatrix in rows and columns L to LEND */

    i__1 = lend - l + 1;
    anorm = template_lapack_lanst("I", &i__1, &d__[l], &e[l]);
    iscale = 0;
    if (anorm > ssfmax) {
	iscale = 1;
	i__1 = lend - l + 1;
	template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
		info);
    } else if (anorm < ssfmin) {
	iscale = 2;
	i__1 = lend - l + 1;
	template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
		info);
    }

    i__1 = lend - 1;
    for (i__ = l; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	d__1 = e[i__];
	e[i__] = d__1 * d__1;
/* L40: */
    }

/*     Choose between QL and QR iteration */

    if ((d__1 = d__[lend], absMACRO(d__1)) < (d__2 = d__[l], absMACRO(d__2))) {
	lend = lsv;
	l = lendsv;
    }

    if (lend >= l) {

/*        QL Iteration   

          Look for small subdiagonal element. */

L50:
	if (l != lend) {
	    i__1 = lend - 1;
	    for (m = l; m <= i__1; ++m) {
		if ((d__2 = e[m], absMACRO(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
			+ 1], absMACRO(d__1))) {
		    goto L70;
		}
/* L60: */
	    }
	}
	m = lend;

L70:
	if (m < lend) {
	    e[m] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L90;
	}

/*        If remaining matrix is 2 by 2, use DLAE2 to compute its   
          eigenvalues. */

	if (m == l + 1) {
	    rte = template_blas_sqrt(e[l]);
	    template_lapack_lae2(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
	    d__[l] = rt1;
	    d__[l + 1] = rt2;
	    e[l] = 0.;
	    l += 2;
	    if (l <= lend) {
		goto L50;
	    }
	    goto L150;
	}

	if (jtot == nmaxit) {
	    goto L150;
	}
	++jtot;

/*        Form shift. */

	rte = template_blas_sqrt(e[l]);
	sigma = (d__[l + 1] - p) / (rte * 2.);
	r__ = template_lapack_lapy2(&sigma, &c_b32);
	sigma = p - rte / (sigma + template_lapack_d_sign(&r__, &sigma));

	c__ = 1.;
	s = 0.;
	gamma = d__[m] - sigma;
	p = gamma * gamma;

/*        Inner loop */

	i__1 = l;
	for (i__ = m - 1; i__ >= i__1; --i__) {
	    bb = e[i__];
	    r__ = p + bb;
	    if (i__ != m - 1) {
		e[i__ + 1] = s * r__;
	    }
	    oldc = c__;
	    c__ = p / r__;
	    s = bb / r__;
	    oldgam = gamma;
	    alpha = d__[i__];
	    gamma = c__ * (alpha - sigma) - s * oldgam;
	    d__[i__ + 1] = oldgam + (alpha - gamma);
	    if (c__ != 0.) {
		p = gamma * gamma / c__;
	    } else {
		p = oldc * bb;
	    }
/* L80: */
	}

	e[l] = s * p;
	d__[l] = sigma + gamma;
	goto L50;

/*        Eigenvalue found. */

L90:
	d__[l] = p;

	++l;
	if (l <= lend) {
	    goto L50;
	}
	goto L150;

    } else {

/*        QR Iteration   

          Look for small superdiagonal element. */

L100:
	i__1 = lend + 1;
	for (m = l; m >= i__1; --m) {
	    if ((d__2 = e[m - 1], absMACRO(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
		    - 1], absMACRO(d__1))) {
		goto L120;
	    }
/* L110: */
	}
	m = lend;

L120:
	if (m > lend) {
	    e[m - 1] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L140;
	}

/*        If remaining matrix is 2 by 2, use DLAE2 to compute its   
          eigenvalues. */

	if (m == l - 1) {
	    rte = template_blas_sqrt(e[l - 1]);
	    template_lapack_lae2(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
	    d__[l] = rt1;
	    d__[l - 1] = rt2;
	    e[l - 1] = 0.;
	    l += -2;
	    if (l >= lend) {
		goto L100;
	    }
	    goto L150;
	}

	if (jtot == nmaxit) {
	    goto L150;
	}
	++jtot;

/*        Form shift. */

	rte = template_blas_sqrt(e[l - 1]);
	sigma = (d__[l - 1] - p) / (rte * 2.);
	r__ = template_lapack_lapy2(&sigma, &c_b32);
	sigma = p - rte / (sigma + template_lapack_d_sign(&r__, &sigma));

	c__ = 1.;
	s = 0.;
	gamma = d__[m] - sigma;
	p = gamma * gamma;

/*        Inner loop */

	i__1 = l - 1;
	for (i__ = m; i__ <= i__1; ++i__) {
	    bb = e[i__];
	    r__ = p + bb;
	    if (i__ != m) {
		e[i__ - 1] = s * r__;
	    }
	    oldc = c__;
	    c__ = p / r__;
	    s = bb / r__;
	    oldgam = gamma;
	    alpha = d__[i__ + 1];
	    gamma = c__ * (alpha - sigma) - s * oldgam;
	    d__[i__] = oldgam + (alpha - gamma);
	    if (c__ != 0.) {
		p = gamma * gamma / c__;
	    } else {
		p = oldc * bb;
	    }
/* L130: */
	}

	e[l - 1] = s * p;
	d__[l] = sigma + gamma;
	goto L100;

/*        Eigenvalue found. */

L140:
	d__[l] = p;

	--l;
	if (l >= lend) {
	    goto L100;
	}
	goto L150;

    }

/*     Undo scaling if necessary */

L150:
    if (iscale == 1) {
	i__1 = lendsv - lsv + 1;
	template_lapack_lascl("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
    }
    if (iscale == 2) {
	i__1 = lendsv - lsv + 1;
	template_lapack_lascl("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
    }

/*     Check for no convergence to an eigenvalue after a total   
       of N*MAXIT iterations. */

    if (jtot < nmaxit) {
	goto L10;
    }
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (e[i__] != 0.) {
	    ++(*info);
	}
/* L160: */
    }
    goto L180;

/*     Sort eigenvalues in increasing order. */

L170:
    template_lapack_lasrt("I", n, &d__[1], info);

L180:
    return 0;

/*     End of DSTERF */

} /* dsterf_ */

#endif