1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_SYTRD_HEADER
#define TEMPLATE_LAPACK_SYTRD_HEADER
#include "template_lapack_common.h"
template<class Treal>
int template_lapack_sytrd(const char *uplo, const integer *n, Treal *a, const integer *
lda, Treal *d__, Treal *e, Treal *tau, Treal *
work, const integer *lwork, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
Test the input parameters
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
integer c_n1 = -1;
integer c__3 = 3;
integer c__2 = 2;
Treal c_b22 = -1.;
Treal c_b23 = 1.;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j;
integer nbmin, iinfo;
logical upper;
integer nb, kk, nx;
integer ldwork, lwkopt;
logical lquery;
integer iws;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--d__;
--e;
--tau;
--work;
/* Initialization added by Elias to get rid of compiler warnings. */
lwkopt = 0;
/* Function Body */
*info = 0;
upper = template_blas_lsame(uplo, "U");
lquery = *lwork == -1;
if (! upper && ! template_blas_lsame(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < maxMACRO(1,*n)) {
*info = -4;
} else if (*lwork < 1 && ! lquery) {
*info = -9;
}
if (*info == 0) {
/* Determine the block size. */
nb = template_lapack_ilaenv(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
lwkopt = *n * nb;
work[1] = (Treal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("SYTRD ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
work[1] = 1.;
return 0;
}
nx = *n;
iws = 1;
if (nb > 1 && nb < *n) {
/* Determine when to cross over from blocked to unblocked code
(last block is always handled by unblocked code).
Computing MAX */
i__1 = nb, i__2 = template_lapack_ilaenv(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
c_n1, (ftnlen)6, (ftnlen)1);
nx = maxMACRO(i__1,i__2);
if (nx < *n) {
/* Determine if workspace is large enough for blocked code. */
ldwork = *n;
iws = ldwork * nb;
if (*lwork < iws) {
/* Not enough workspace to use optimal NB: determine the
minimum value of NB, and reduce NB or force use of
unblocked code by setting NX = N.
Computing MAX */
i__1 = *lwork / ldwork;
nb = maxMACRO(i__1,1);
nbmin = template_lapack_ilaenv(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
(ftnlen)6, (ftnlen)1);
if (nb < nbmin) {
nx = *n;
}
}
} else {
nx = *n;
}
} else {
nb = 1;
}
if (upper) {
/* Reduce the upper triangle of A.
Columns 1:kk are handled by the unblocked method. */
kk = *n - (*n - nx + nb - 1) / nb * nb;
i__1 = kk + 1;
i__2 = -nb;
for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
i__2) {
/* Reduce columns i:i+nb-1 to tridiagonal form and form the
matrix W which is needed to update the unreduced part of
the matrix */
i__3 = i__ + nb - 1;
template_lapack_latrd(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
work[1], &ldwork);
/* Update the unreduced submatrix A(1:i-1,1:i-1), using an
update of the form: A := A - V*W' - W*V' */
i__3 = i__ - 1;
template_blas_syr2k(uplo, "No transpose", &i__3, &nb, &c_b22, &a_ref(1, i__),
lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);
/* Copy superdiagonal elements back into A, and diagonal
elements into D */
i__3 = i__ + nb - 1;
for (j = i__; j <= i__3; ++j) {
a_ref(j - 1, j) = e[j - 1];
d__[j] = a_ref(j, j);
/* L10: */
}
/* L20: */
}
/* Use unblocked code to reduce the last or only block */
template_lapack_sytd2(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
} else {
/* Reduce the lower triangle of A */
i__2 = *n - nx;
i__1 = nb;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Reduce columns i:i+nb-1 to tridiagonal form and form the
matrix W which is needed to update the unreduced part of
the matrix */
i__3 = *n - i__ + 1;
template_lapack_latrd(uplo, &i__3, &nb, &a_ref(i__, i__), lda, &e[i__], &tau[
i__], &work[1], &ldwork);
/* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
an update of the form: A := A - V*W' - W*V' */
i__3 = *n - i__ - nb + 1;
template_blas_syr2k(uplo, "No transpose", &i__3, &nb, &c_b22, &a_ref(i__ + nb,
i__), lda, &work[nb + 1], &ldwork, &c_b23, &a_ref(i__ +
nb, i__ + nb), lda);
/* Copy subdiagonal elements back into A, and diagonal
elements into D */
i__3 = i__ + nb - 1;
for (j = i__; j <= i__3; ++j) {
a_ref(j + 1, j) = e[j];
d__[j] = a_ref(j, j);
/* L30: */
}
/* L40: */
}
/* Use unblocked code to reduce the last or only block */
i__1 = *n - i__ + 1;
template_lapack_sytd2(uplo, &i__1, &a_ref(i__, i__), lda, &d__[i__], &e[i__], &tau[
i__], &iinfo);
}
work[1] = (Treal) lwkopt;
return 0;
/* End of DSYTRD */
} /* dsytrd_ */
#undef a_ref
#endif
|