File: template_lapack_sytrd.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (373 lines) | stat: -rw-r--r-- 11,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_SYTRD_HEADER
#define TEMPLATE_LAPACK_SYTRD_HEADER

#include "template_lapack_common.h"

template<class Treal>
int template_lapack_sytrd(const char *uplo, const integer *n, Treal *a, const integer *
	lda, Treal *d__, Treal *e, Treal *tau, Treal *
	work, const integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal   
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) DOUBLE PRECISION array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.   

    TAU     (output) DOUBLE PRECISION array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).   

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     integer c_n1 = -1;
     integer c__3 = 3;
     integer c__2 = 2;
     Treal c_b22 = -1.;
     Treal c_b23 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    /* Local variables */
     integer i__, j;
     integer nbmin, iinfo;
     logical upper;
     integer nb, kk, nx;
     integer ldwork, lwkopt;
     logical lquery;
     integer iws;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --d__;
    --e;
    --tau;
    --work;

    /* Initialization added by Elias to get rid of compiler warnings. */
    lwkopt = 0;
    /* Function Body */
    *info = 0;
    upper = template_blas_lsame(uplo, "U");
    lquery = *lwork == -1;
    if (! upper && ! template_blas_lsame(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -4;
    } else if (*lwork < 1 && ! lquery) {
	*info = -9;
    }

    if (*info == 0) {

/*        Determine the block size. */

	nb = template_lapack_ilaenv(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
	lwkopt = *n * nb;
	work[1] = (Treal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("SYTRD ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    nx = *n;
    iws = 1;
    if (nb > 1 && nb < *n) {

/*        Determine when to cross over from blocked to unblocked code   
          (last block is always handled by unblocked code).   

   Computing MAX */
	i__1 = nb, i__2 = template_lapack_ilaenv(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
		c_n1, (ftnlen)6, (ftnlen)1);
	nx = maxMACRO(i__1,i__2);
	if (nx < *n) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  determine the   
                minimum value of NB, and reduce NB or force use of   
                unblocked code by setting NX = N.   

   Computing MAX */
		i__1 = *lwork / ldwork;
		nb = maxMACRO(i__1,1);
		nbmin = template_lapack_ilaenv(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
			 (ftnlen)6, (ftnlen)1);
		if (nb < nbmin) {
		    nx = *n;
		}
	    }
	} else {
	    nx = *n;
	}
    } else {
	nb = 1;
    }

    if (upper) {

/*        Reduce the upper triangle of A.   
          Columns 1:kk are handled by the unblocked method. */

	kk = *n - (*n - nx + nb - 1) / nb * nb;
	i__1 = kk + 1;
	i__2 = -nb;
	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
		i__2) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the   
             matrix W which is needed to update the unreduced part of   
             the matrix */

	    i__3 = i__ + nb - 1;
	    template_lapack_latrd(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
		    work[1], &ldwork);

/*           Update the unreduced submatrix A(1:i-1,1:i-1), using an   
             update of the form:  A := A - V*W' - W*V' */

	    i__3 = i__ - 1;
	    template_blas_syr2k(uplo, "No transpose", &i__3, &nb, &c_b22, &a_ref(1, i__), 
		    lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);

/*           Copy superdiagonal elements back into A, and diagonal   
             elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a_ref(j - 1, j) = e[j - 1];
		d__[j] = a_ref(j, j);
/* L10: */
	    }
/* L20: */
	}

/*        Use unblocked code to reduce the last or only block */

	template_lapack_sytd2(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
    } else {

/*        Reduce the lower triangle of A */

	i__2 = *n - nx;
	i__1 = nb;
	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the   
             matrix W which is needed to update the unreduced part of   
             the matrix */

	    i__3 = *n - i__ + 1;
	    template_lapack_latrd(uplo, &i__3, &nb, &a_ref(i__, i__), lda, &e[i__], &tau[
		    i__], &work[1], &ldwork);

/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
             an update of the form:  A := A - V*W' - W*V' */

	    i__3 = *n - i__ - nb + 1;
	    template_blas_syr2k(uplo, "No transpose", &i__3, &nb, &c_b22, &a_ref(i__ + nb,
		     i__), lda, &work[nb + 1], &ldwork, &c_b23, &a_ref(i__ + 
		    nb, i__ + nb), lda);

/*           Copy subdiagonal elements back into A, and diagonal   
             elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a_ref(j + 1, j) = e[j];
		d__[j] = a_ref(j, j);
/* L30: */
	    }
/* L40: */
	}

/*        Use unblocked code to reduce the last or only block */

	i__1 = *n - i__ + 1;
	template_lapack_sytd2(uplo, &i__1, &a_ref(i__, i__), lda, &d__[i__], &e[i__], &tau[
		i__], &iinfo);
    }

    work[1] = (Treal) lwkopt;
    return 0;

/*     End of DSYTRD */

} /* dsytrd_ */

#undef a_ref


#endif