1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file grid_test.cc Tests the DFT grid generation. This
test generates the grid, possibly several times to detect problems
with eg. thread synchronisation.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <memory>
#include "dft_common.h"
#include "grid_reader.h"
#include "grid_stream.h"
#define NATOMS 2
#define N_BF_SHELLS 2
#define N_BFS 4
static const struct {
ergo_real position[3];
int charge;
} Atoms[] = {
{ { 0, 0, 0 }, 1 },
{ { 0, 0, 1 }, 2 }
};
static ergo_real ShellRadii[] = { 1, 2 };
class MyMolInfo : public GridGenMolInfo {
public:
MyMolInfo() : GridGenMolInfo(NATOMS, N_BFS, N_BF_SHELLS) {}
virtual void getAtom(int icent, int *cnt, real (*coor)[3],
int *charge, int *mult) const
{
*cnt = 1;
coor[0][0] = Atoms[icent].position[0];
coor[0][1] = Atoms[icent].position[1];
coor[0][2] = Atoms[icent].position[2];
*charge = Atoms[icent].charge;
*mult = 1;
}
virtual void setShellRadii(real *shellRadii) const
{
memcpy(shellRadii, ShellRadii, N_BF_SHELLS*sizeof(ergo_real));
}
virtual void getBlocks(const real *center, real cellsz, const real *rshell,
int *nblcnt, int (*iblcks)[2]) const
{
*nblcnt = 1;
if (center[0]*center[0] + center[1]*center[1] + center[2]*center[2]
< 3) {
iblcks[0][0] = 0;
iblcks[0][1] = N_BF_SHELLS;
} else {
iblcks[0][0] = 1;
iblcks[0][1] = 2;
}
}
virtual void getExps(int *maxl, int **bascnt, real (**aa)[2]) const
{
static const int lda = 2;
maxl[0] = 2;
*bascnt = (int*)calloc(lda*NATOMS, sizeof(int));
*aa = (real(*)[2])calloc(2*lda*NATOMS, sizeof(real));
(*bascnt)[0 + 0*lda] = 1; /* s functions on first atom */
(*bascnt)[1 + 0*lda] = 0; /* p functions on the first atom */
(*bascnt)[0 + 1*lda] = 0; /* s functions on first atom */
(*bascnt)[1 + 1*lda] = 1; /* p functions on the first atom */
/* Range of exponents on the first atom */
(*aa)[0][0] = 0.5;
(*aa)[0][1] = 0.5;
(*aa)[1][0] = 0.0; /* no p functions */
(*aa)[1][1] = 0.0; /* no p functions */
/* Range of exponents on the second atom */
(*aa)[2][0] = 0.0;
(*aa)[2][1] = 0.0;
(*aa)[3][0] = 0.2;
(*aa)[3][1] = 0.2;
}
};
static const MyMolInfo MolInfo;
static bool
pattern_to_ps(Dft::SparsePattern& p, const char* fName)
{
// const char * PS_PREFIX = "";
#if 0
"%%!PS-Adobe-2.0 EPSF-2.0\n"
"%%%%Title: Test\n"
"%%%%Creator: Pawel Salek\n"
"%%%%Magnification: 1.00\n"
"%%%%Orientation: Portrait\n"
"%%%%EndComments\n\n"
"/inch { 72 mul } def\n"
"/b { 0 rmoveto currentpoint currentpoint newpath moveto\n"
"1 0 rlineto 0 1 rlineto -1 0 rlineto closepath fill moveto } def\n"
"%% now run it!\n"
"1 inch 1 inch moveto\n";
#endif
// const char * PS_SUFFIX =
// "\nshowpage\n"
// "%%EOF\n";
FILE *f=fopen(fName, "wt");
if (!f) {
perror("fopen");
return false;
}
// fprintf(f, PS_PREFIX);
fprintf(f, "%f %f scale %% size = %d\n", 72*6.0/p.size(), 72*6.0/p.size(),
p.size());
for(int column=0; column<p.size(); ++column) {
int lastbox = 0;
fprintf(f,"currentpoint\n");
for (Dft::SparsePattern::Column::Iterator i = p[column].begin();
i != p[column].end();
++i) {
fprintf(f,"%d b\n", *i-lastbox);
//for(int x=lastbox; x<(*i)-1; ++x) putchar(' '); putchar('x');
lastbox = *i;
}
fprintf(f,"moveto 0 1 rmoveto\n");
//puts("");
}
// fprintf(f, PS_SUFFIX);
fclose(f);
return true;
}
/** This routine tests the sparsity pattern generation scalability
properties. At some point in time, water boxes of increasing
sizes had irregular sparse pattern. This test helps to debug such
cases.
*/
static bool
grid_test_scaling(const char *fName)
{
time_t tm; time(&tm);
Molecule mol;
int res = mol.setFromMoleculeFile(fName, 0, NULL);
if(res != 0) {
fprintf(stderr, "Loading molecule from %s failed.\n", fName);
return false;
}
IntegralInfo ii(true);
BasisInfoStruct bisOrig;
if(bisOrig.addBasisfuncsForMolecule(mol, ERGO_SPREFIX "/basis/STO-1G",
0, NULL, ii, 0, 0, 0) != 0) {
printf("bis->addBasisfuncsForMolecule failed.\n");
throw "addBasisfuncs failed";
}
Dft::GridParams gridParams(1e-7, 6, 25);
gridParams.radialGridScheme = Dft::GridParams::LMG;
int *shellMap = new int[bisOrig.noOfShells];
int *aoMap = new int[bisOrig.noOfBasisFuncs];
Dft::setupShellMap(bisOrig, shellMap, aoMap);
BasisInfoStruct * bisPermuted = bisOrig.permuteShells(shellMap, ii);
delete []shellMap;
delete []aoMap;
ErgoMolInfo molInfo(*bisPermuted, mol);
/* The important structure of this test */
Dft::SparsePattern pattern(*bisPermuted);
char grid_file_name[] = "scaling_test_XXXXXX";
close(mkstemp(grid_file_name));
ErgoGridStream *egStream = grid_stream_new(gridParams, molInfo);
grid_stream_set_sparse_pattern(egStream, &pattern);
grid_stream_generate(egStream, grid_file_name, dft_get_num_threads());
grid_stream_free(egStream);
printf("Stop %lu s wall time %d nonzero elements\n",
((unsigned long)time(NULL))-tm, pattern.sizeTotal());
unlink(grid_file_name);
pattern_to_ps(pattern, "pattern.ps");
return true;
}
static void
grid_test_synchronisation()
{
static const int NREPEAT = 500;
static const int BATCH_LENGTH = 50000;
// Elias note: earlier, coor and weight were placed directly on the stack like this:
// real coor[BATCH_LENGTH][3];
// real weight[BATCH_LENGTH];
// but that gave stack overflow on some systems, so it was changed
// to the dynamic allocation below.
real (*coor)[3];
std::vector<real> coorData(3*BATCH_LENGTH);
coor = (real (*)[3])(&coorData[0]);
std::vector<real> weight(BATCH_LENGTH);
Dft::GridParams gridParams(1e-5, 6, 7);
Molecule mol;
for(int i = 0; i < NATOMS; i++)
mol.addAtom(Atoms[i].charge, Atoms[i].position[0], Atoms[i].position[1], Atoms[i].position[2]);
IntegralInfo ii(true);
BasisInfoStruct bis;
if(bis.addBasisfuncsForMolecule(mol, ERGO_SPREFIX "/basis/STO-1G",
0, NULL, ii, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
throw "addBasisfuncs failed";
}
for(int i = 0; i < NREPEAT; i++) {
DftGridReader* g = grid_open_full(&MolInfo, gridParams, NULL, NULL, bis);
int np;
unsigned cnt = 0;
while ( (np = grid_getchunk_blocked(g, BATCH_LENGTH,
NULL, NULL,
coor, &weight[0])) >= 0){
cnt += np;
}
grid_close(g);
grid_free_files();
}
printf("Grid generation %i times succeeded.\n", NREPEAT);
}
int
main(int argc, char *argv[])
{
const char *tmpdir = getenv("TMPDIR");
tmpdir = tmpdir ? tmpdir : "/tmp";
grid_set_tmpdir(tmpdir);
switch (argc) {
case 2:
grid_test_scaling(argv[1]);
break;
default:
grid_test_synchronisation();
}
return 0;
}
|