1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file kmat_test.cc Tests the sparse exchange matrix construction. */
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include <vector>
#include "matrix_utilities.h"
#include "integral_matrix_wrappers.h"
int main(int argc, char *argv[])
{
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) ) {
defThreads = 1;
}
#ifdef _OPENMP
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(2);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
IntegralInfo integralInfo(true);
BasisInfoStruct bis;
Molecule m;
int nx, ny, nz;
if(getenv("RUN_BENCHMARK"))
{
nx = 5;
ny = 4;
nz = 4;
}
else
{
nx = 2;
ny = 2;
nz = 2;
}
const ergo_real space = 8.0;
int atomCount = 0;
for(int ix = 0; ix < nx; ix++)
for(int iy = 0; iy < ny; iy++)
for(int iz = 0; iz < nz; iz++)
{
ergo_real x = ix*space + 0.4*std::cos((ix+iy+iz)*0.2+0.0)*space;
ergo_real y = iy*space + 0.4*std::cos((ix+iy+iz)*0.2+0.3)*space;
ergo_real z = iz*space + 0.4*std::cos((ix+iy+iz)*0.2+0.6)*space;
/* Use a mix of charges: H, C, Zn.
It is good to have some Zn there so we check also usage
of basis functions of f type. */
int charge = 1;
if(atomCount%3 == 0)
charge = 6;
if(atomCount%9 == 0)
charge = 30;
m.addAtom(charge, x, y, z);
atomCount++;
}
if(bis.addBasisfuncsForMolecule(m, ERGO_SPREFIX "/basis/6-31Gss",
0, NULL, integralInfo, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
return 1;
}
mat::SizesAndBlocks matrix_size_block_info =
prepareMatrixSizesAndBlocks(bis.noOfBasisFuncs,
20, 8, 8, 8);
std::vector<int> permutationHML(bis.noOfBasisFuncs);
std::vector<int> inversePermutationHML(bis.noOfBasisFuncs);
getMatrixPermutation(bis, 20, 8, 8, 8,
permutationHML,
inversePermutationHML);
symmMatrix D;
D.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix K_1;
K_1.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix K_2;
K_2.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix K_diff;
K_diff.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
{
/* Add values to density matrix diagonal and one step
next to diagonal. */
const int nvalues1 = bis.noOfBasisFuncs;
std::vector<int> idxrow(nvalues1);
std::vector<int> idxcol(nvalues1);
std::vector<ergo_real> values(nvalues1);
for(int i=0; i<nvalues1; i++) {
idxrow[i] = i;
idxcol[i] = i;
values[i] = 1.0;
}
D.add_values(idxrow, idxcol, values,
permutationHML,
permutationHML);
const int nvalues2 = bis.noOfBasisFuncs-1;
for(int i=0; i<nvalues2; i++) {
idxrow[i] = i;
idxcol[i] = i+1;
values[i] = 0.3;
}
idxrow.resize(nvalues2);
idxcol.resize(nvalues2);
values.resize(nvalues2);
D.add_values(idxrow, idxcol, values,
permutationHML,
permutationHML);
}
JK::Params J_K_params;
J_K_params. noOfThreads_K = defThreads;
static const ergo_real EPS = mat::getMachineEpsilon<ergo_real>();
J_K_params.threshold_K = template_blas_sqrt(EPS);
JK::ExchWeights CAM_params_not_used;
J_K_params.exchange_box_size = 10;
if(compute_K_by_boxes_sparse(bis, integralInfo, CAM_params_not_used, J_K_params, K_1, D,
permutationHML,
inversePermutationHML) != 0)
{
printf("Error in compute_K_by_boxes_sparse\n");
return -1;
}
J_K_params.exchange_box_size = 4;
if(compute_K_by_boxes_sparse(bis, integralInfo, CAM_params_not_used, J_K_params, K_2, D,
permutationHML,
inversePermutationHML) != 0)
{
printf("Error in compute_K_by_boxes_sparse\n");
return -1;
}
K_diff = K_1;
K_diff += (ergo_real)(-1.0) * K_2;
ergo_real acc = template_blas_sqrt(EPS);
ergo_real diffNorm = K_diff.eucl(acc);
ergo_real requestedAcc;
if(getenv("RUN_BENCHMARK"))
requestedAcc = J_K_params.threshold_K*25*nx*ny*nz;
else
requestedAcc = J_K_params.threshold_K*25*nx*ny*nz;
if(diffNorm > requestedAcc)
{
printf("Error in K test: diff too large!\n");
printf("diffNorm = %8.4g\n", (double)diffNorm);
printf("requestedAcc = %8.4g\n", (double)requestedAcc);
return -1;
}
unlink("ergoscf.out");
printf("K test OK, diffNorm = %7.4g\n", (double)diffNorm);
return 0;
}
|