1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include "matrix_typedefs.h"
#include "matrix_utilities.h"
#include "utilities.h"
/** @file simple_ort_puri_test.cc Performs some simple tests of
density matrix purification in orthogonal basis using artificialy
generated input matrices. Written by Elias in Nov 2016. */
//const ergo_real penalty_alpha = 22;
static void report_timing(Util::TimeMeter & tm, const char* s) {
double secondsTaken = tm.get_wall_seconds() - tm.get_start_time_wall_seconds();
printf("report_timing for '%s': %f wall seconds\n", s, secondsTaken);
}
#if 0
static void get_tridiagonal_matrix_periodic(symmMatrix & F, int n, const std::vector<int> & perm) {
// Create tridiagonal matrix with just the off-diagonal elements being nonzero
std::vector<int> rows(n);
std::vector<int> cols(n);
std::vector<ergo_real> values(n);
for(int i = 0; i < n; i++) {
int row = i;
int col = i+1;
if(col == n)
col = 0;
rows[i] = row;
cols[i] = col;
values[i] = 1;
}
F.assign_from_sparse(rows, cols, values, perm, perm);
}
static void get_tridiagonal_matrix_nonperiodic(symmMatrix & F, int n, const std::vector<int> & perm) {
// Create tridiagonal matrix with just the off-diagonal elements being nonzero
int nElements = n-1;
std::vector<int> rows(nElements);
std::vector<int> cols(nElements);
std::vector<ergo_real> values(nElements);
for(int i = 0; i < nElements; i++) {
rows[i] = i;
cols[i] = i+1;
values[i] = 1;
}
F.assign_from_sparse(rows, cols, values, perm, perm);
}
#endif
/*****************************************************************
Here we construct Huckel-style Hamiltonian matrix for a periodic
molecular system like this:
H1 H3 H5 H7
| | | |
C1 == C2 -- C3 == C4 -- C5 == C6 -- C7 == C8 --
| | | |
H2 H4 H6 H8
The basis functions are ordered like this:
C1 H1 C2 H2 C3 H3 C4 H4 ...
The Hamiltonian matrix then looks like this:
C1 H1 C2 H2 C3 H3 C4 H4
C1 a c b
H1 d
C2 a c b
H2 d
C3 a c b
H3 d
C4 a c
H4 d
... and so on.
The values of the matrix elements a, b, c, d are as follows:
a = alpha (diagonal entry for C atoms)
b = beta (off-diagonal entry for neighboring C-C atoms)
d = alpha + h_A * beta (diagonal entry for H atoms)
c = k_AB * beta (off-diagonal entry for neighboring C-H atoms)
*****************************************************************/
static void get_Huckel_matrix_periodic(symmMatrix & F, int n, const std::vector<int> & perm) {
assert(n % 2 == 0);
assert(n >= 4);
// FIXME: find out what are some reasonable values for the 4 parameters below. They affect gap and sparsity.
// Setting alpha and h_A to zero still works, then the diagonal becomes zero and the ratio between beta and k_AB determines the properties of the system.
const ergo_real alpha = 1.3;
const ergo_real beta = 0.75;
const ergo_real h_A = 0.95;
const ergo_real k_AB = 0.15;
// The number of matrix elements will be n*2 because we have n
// elements on the diagonal, plus n off-diagonal elements.
int nElements = 2*n;
std::vector<int> rows(nElements);
std::vector<int> cols(nElements);
std::vector<ergo_real> values(nElements);
int nCarbons = n/2;
int count = 0;
int row, col;
ergo_real value;
for(int i = 0; i < nCarbons; i++) {
// Now do the row of C_i (3 matrix elements)
row = i*2;
col = row;
value = alpha;
rows[count] = row; cols[count] = col; values[count] = value; count++;
col = row+1;
if(col >= n)
col -= n;
value = k_AB * beta;
rows[count] = row; cols[count] = col; values[count] = value; count++;
col = row+2;
if(col >= n)
col -= n;
value = beta;
rows[count] = row; cols[count] = col; values[count] = value; count++;
// Now do the row of H_i (1 matrix element)
row++;
col = row;
value = alpha + h_A * beta;
rows[count] = row; cols[count] = col; values[count] = value; count++;
}
assert(count == nElements);
F.assign_from_sparse(rows, cols, values, perm, perm);
}
static void assign_from_full_matrix(symmMatrix & A, const ergo_real* A_full, int n, const std::vector<int> & perm) {
int nElements = n*n;
std::vector<int> rows(nElements);
std::vector<int> cols(nElements);
std::vector<ergo_real> values(nElements);
ergo_real tolerance = template_blas_sqrt(mat::getMachineEpsilon<ergo_real>());
int count = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
ergo_real transpose_absdiff = template_blas_fabs(A_full[i*n+j] - A_full[j*n+i]);
if(transpose_absdiff > tolerance) {
std::cerr << "Error in assign_from_full_matrix: (transpose_absdiff > tolerance). transpose_absdiff = " << (double)transpose_absdiff << " tolerance = " << (double)tolerance << std::endl;
throw std::runtime_error("Error in assign_from_full_matrix: (transpose_absdiff > tolerance).");
}
rows[count] = i;
cols[count] = j;
values[count] = A_full[i*n+j];
count++;
}
assert(count == nElements);
normalMatrix A2(A);
A2.assign_from_sparse(rows, cols, values, perm, perm);
A = A2;
}
static void print_matrix(const symmMatrix & A, const char* A_name, int n, ergo_real scaleFactor = 1.0) {
printf("print_matrix for matrix '%s', n = %d\n", A_name, n);
int nTrunc = 20;
if(n > nTrunc)
printf("Only showing part of matrix because (n > nTrunc).\n");
if(scaleFactor != 1.0)
printf("NOTE: USING scaleFactor = %f\n", (double)scaleFactor);
normalMatrix A2(A);
for(int row = 0; row < n; row++) {
if(row > nTrunc)
continue;
std::vector<int> rows(n);
std::vector<int> cols(n);
for(int i = 0; i < n; i++) {
rows[i] = row;
cols[i] = i;
}
std::vector<ergo_real> values(n);
A2.get_values(rows, cols, values);
for(int col = 0; col < n; col++) {
if(col > nTrunc)
continue;
printf(" %7.4f", (double)(values[col]*scaleFactor));
}
printf("\n");
} // end for row
}
static void get_all_matrix_elements_nosymm(const normalMatrix & A, int n, std::vector<ergo_real> & result) {
result.resize(n*n);
std::vector<int> rows(n*n);
std::vector<int> cols(n*n);
int count = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
rows[count] = i;
cols[count] = j;
count++;
}
A.get_values(rows, cols, result);
}
static void get_all_matrix_elements_symm(const symmMatrix & A, int n, std::vector<ergo_real> & result) {
normalMatrix A2(A);
get_all_matrix_elements_nosymm(A2, n, result);
}
struct DensMatInfo {
ergo_real lambda_min;
ergo_real lambda_max;
ergo_real lambda_homo;
ergo_real lambda_lumo;
};
static void get_density_mat_by_diagonalization(const symmMatrix & F,
symmMatrix & D,
DensMatInfo & info,
int n,
int n_occ,
const std::vector<int> & perm) {
assert(n >= 1);
assert(n_occ >= 0 && n_occ <= n);
// Get full matrix
std::vector<ergo_real> F_full(n*n);
get_all_matrix_elements_symm(F, n, F_full);
// Diagonalize
int lwork = 3*n*n;
std::vector<ergo_real> work(lwork);
std::vector<ergo_real> eigvalList(n);
std::vector<ergo_real> A(n*n);
memcpy(&A[0], &F_full[0], n*n*sizeof(ergo_real));
int syev_info = 0;
mat::syev("V", "U", &n, &A[0],
&n, &eigvalList[0], &work[0], &lwork,
&syev_info);
if(syev_info != 0)
throw std::runtime_error("ERROR: mat::syev() failed, gave (syev_info != 0).");
// Save info about eigenvalues
info.lambda_min = eigvalList[0];
info.lambda_max = eigvalList[n-1];
info.lambda_homo = eigvalList[n_occ-1];
info.lambda_lumo = eigvalList[n_occ];
// Put together density matrix using eigenvectors
std::vector<ergo_real> D_full(n*n);
for(int i = 0; i < n*n; i++)
D_full[i] = 0;
for(int i = 0; i < n_occ; i++) {
// Add x*xT for cirrent eigenvector x
const ergo_real* x = &A[i*n];
for(int a = 0; a < n; a++)
for(int b = 0; b < n; b++)
D_full[a*n+b] += x[a]*x[b];
}
assign_from_full_matrix(D, &D_full[0], n, perm);
}
static void print_DensMatInfo(const DensMatInfo & info) {
printf("info.lambda_min = %f\n", (double)info.lambda_min);
printf("info.lambda_max = %f\n", (double)info.lambda_max);
printf("info.lambda_homo = %f\n", (double)info.lambda_homo);
printf("info.lambda_lumo = %f\n", (double)info.lambda_lumo);
}
static ergo_real get_nnz_percentage(int n, const symmMatrix & X) {
ergo_real nnz = X.nnz();
ergo_real n2 = (ergo_real)n*n;
ergo_real nnz_percentage = 100 * nnz / n2;
return nnz_percentage;
}
static void update_nnz_percentages(int n, const symmMatrix & X, ergo_real & nnz_percentage_min, ergo_real & nnz_percentage_max) {
ergo_real nnz_percentage = get_nnz_percentage(n, X);
if(nnz_percentage < nnz_percentage_min)
nnz_percentage_min = nnz_percentage;
if(nnz_percentage > nnz_percentage_max)
nnz_percentage_max = nnz_percentage;
}
#if 0
static void verify_symmetry(int n, const normalMatrix & X) {
std::vector<ergo_real> fullMat(n*n);
get_all_matrix_elements_nosymm(X, n, fullMat);
for(int i = 0; i < n; i++)
for(int j = i+1; j < n; j++) {
ergo_real absdiff = template_blas_fabs(fullMat[i*n+j]-fullMat[j*n+i]);
assert(absdiff < 1e-9);
}
}
static void get_symm_triple_product_ABA(int n,
const symmMatrix & A,
const symmMatrix & B,
symmMatrix & result_ABA) {
normalMatrix AB(A);
AB = A * B;
normalMatrix ABA(A);
ABA = AB * A;
// Check that ABA is really symmetric
verify_symmetry(n, ABA);
symmMatrix ABA_symm(ABA);
result_ABA = ABA_symm;
}
static void get_triple_product_of_symm_mats(int n,
const symmMatrix & A,
const symmMatrix & B,
const symmMatrix & C,
normalMatrix & result_ABC) {
normalMatrix AB(A);
AB = A * B;
normalMatrix ABC(A);
ABC = AB * C;
result_ABC = ABC;
}
static void get_triple_product_of_normal_mats(int n,
const normalMatrix & A,
const normalMatrix & B,
const normalMatrix & C,
normalMatrix & result_ABC) {
normalMatrix AB(A);
AB = A * B;
normalMatrix ABC(A);
ABC = AB * C;
result_ABC = ABC;
}
static void get_diagonal_of_matrix(int n,
const symmMatrix & A,
symmMatrix & result_A_diag) {
std::vector<int> rowind(n);
std::vector<int> colind(n);
for(int i = 0; i < n; i++) {
rowind[i] = i;
colind[i] = i;
}
std::vector<ergo_real> values(n);
A.get_values(rowind, colind, values);
result_A_diag.assign_from_sparse(rowind, colind, values);
}
static void add_to_one_element_symm(int row, int col, ergo_real x, symmMatrix & X, const std::vector<int> & perm) {
std::vector<int> rowind;
std::vector<int> colind;
std::vector<ergo_real> values;
if(row == col) {
rowind.resize(1);
colind.resize(1);
values.resize(1);
rowind[0] = row;
colind[0] = col;
values[0] = x;
}
else {
// Two off-diagonal elements
rowind.resize(2);
colind.resize(2);
values.resize(2);
rowind[0] = row;
colind[0] = col;
values[0] = x;
rowind[1] = col;
colind[1] = row;
values[1] = x;
}
normalMatrix tmp(X);
tmp.assign_from_sparse(rowind, colind, values, perm, perm);
symmMatrix tmp2(tmp);
X += tmp2;
}
static void add_to_one_element_nosymm(int row, int col, ergo_real x, normalMatrix & X, const std::vector<int> & perm) {
std::vector<int> rowind;
std::vector<int> colind;
std::vector<ergo_real> values;
rowind.resize(1);
colind.resize(1);
values.resize(1);
rowind[0] = row;
colind[0] = col;
values[0] = x;
normalMatrix tmp(X);
tmp.assign_from_sparse(rowind, colind, values, perm, perm);
X += tmp;
}
static ergo_real evaluate_f1_symm(int n,
const symmMatrix & D,
const symmMatrix & E) {
symmMatrix Po(D);
symmMatrix Pv(D);
Pv.add_identity(-1);
Pv *= -1.0;
// Get X = Po * E * Pv
normalMatrix X(D);
get_triple_product_of_symm_mats(n, Po, E, Pv, X);
normalMatrix XTX(D);
XTX = transpose(X) * X;
return 2*XTX.trace();
}
static ergo_real evaluate_f1_nosymm(int n,
const symmMatrix & D,
const normalMatrix & E) {
normalMatrix Po(D);
normalMatrix Pv(D);
Pv.add_identity(-1);
Pv *= -1.0;
normalMatrix ET(E);
ET = transpose(E);
// Get X = Po * E * Pv
normalMatrix Xov(D);
get_triple_product_of_normal_mats(n, Po, E, Pv, Xov);
normalMatrix XovTXov(D);
XovTXov = transpose(Xov) * Xov;
normalMatrix Xvo(D);
get_triple_product_of_normal_mats(n, Pv, E, Po, Xvo); // NOTE: it must be E here, not ET!
normalMatrix XvoTXvo(D);
XvoTXvo = transpose(Xvo) * Xvo;
#if 0
// Check if Xvo is transpose of Xov (it is not!)
normalMatrix T;
T = transpose(Xov);
T += (-1.0)*Xvo;
std::cout << "T.frob() = " << T.frob() << " Xvo.frob() = " << Xvo.frob() << " Xov.frob() = " << Xov.frob() << std::endl;
#endif
return XovTXov.trace() + XvoTXvo.trace();
}
static void zeroize_elements_inside_pattern(const symmMatrix & patternMat,
const normalMatrix & E_in,
normalMatrix & E_result,
const std::vector<int> & perm) {
// Get all elements of patternMat in order to get the sparsity pattern
normalMatrix patternMat_nosymm(patternMat);
std::vector<int> rowind;
std::vector<int> colind;
std::vector<ergo_real> values;
patternMat_nosymm.get_all_values(rowind, colind, values);
// Get corresponding elements of E_in
E_in.get_values(rowind, colind, values);
normalMatrix tmp(E_in);
tmp.assign_from_sparse(rowind, colind, values, perm, perm); // Now tmp contains the elements we want to remove.
E_result = E_in;
E_result -= tmp;
}
static void get_g_of_E_minus_E0(int n,
const symmMatrix & E0,
const symmMatrix & patternMat,
const symmMatrix & E,
const std::vector<int> & perm,
symmMatrix & result_g_of_E_minus_E0) {
symmMatrix E_minus_E0(E);
E_minus_E0 -= E0;
normalMatrix E_minus_E0_normal(E_minus_E0);
normalMatrix g_of_E_minus_E0(E);
zeroize_elements_inside_pattern(patternMat, E_minus_E0_normal, g_of_E_minus_E0, perm);
verify_symmetry(n, g_of_E_minus_E0);
symmMatrix g_of_E_minus_E0_symm(g_of_E_minus_E0);
result_g_of_E_minus_E0 = g_of_E_minus_E0_symm;
}
static ergo_real evaluate_f2_nosymm(int n,
const symmMatrix & patternMat, // matrix defining sparsity pattern
const symmMatrix & E0,
const normalMatrix & E,
const std::vector<int> & perm) {
normalMatrix E_minus_E0(E);
normalMatrix E0_nosymm(E0);
E_minus_E0 -= E0_nosymm;
normalMatrix g_of_E_minus_E0(E);
zeroize_elements_inside_pattern(patternMat, E_minus_E0, g_of_E_minus_E0, perm);
normalMatrix Y(g_of_E_minus_E0);
normalMatrix YTY(E);
YTY = transpose(Y) * Y;
ergo_real factor = 1;
ergo_real result = factor * YTY.trace();
// printf("evaluate_f2_nosymm returning %12.6g (Y.frob() = %12.6g)\n", result, Y.frob());
return result;
}
static ergo_real evaluate_func_nosymm(int n,
const symmMatrix & D,
const symmMatrix & E0,
const symmMatrix & patternMat, // matrix defining sparsity pattern
const normalMatrix & E,
const std::vector<int> & perm,
const std::string & funcName) {
if(funcName == "f1")
return evaluate_f1_nosymm(n, D, E);
else if(funcName == "f2")
return evaluate_f2_nosymm(n, patternMat, E0, E, perm);
else
throw std::runtime_error("ERROR in evaluate_func_nosymm: unknown funcName.");
}
static ergo_real evaluate_f_complete_symm(int n,
const symmMatrix & D,
const symmMatrix & E0,
const symmMatrix & patternMat, // matrix defining sparsity pattern
const symmMatrix & E,
const std::vector<int> & perm) {
normalMatrix E_nosymm(E);
ergo_real f1Value = evaluate_f1_nosymm(n, D, E_nosymm);
ergo_real f2Value = evaluate_f2_nosymm(n, patternMat, E0, E_nosymm, perm);
return f1Value + penalty_alpha * f2Value;
}
static void get_numerical_gradient_of_func(int n,
const symmMatrix & D,
const symmMatrix & E0,
const symmMatrix & patternMat, // matrix defining sparsity pattern
const symmMatrix & E_in,
symmMatrix & result_numerical_gradient_of_f1,
const std::vector<int> & perm,
const std::string & funcName) {
normalMatrix E_nosymm(E_in);
// Get result numerically, as full matrix
const ergo_real h = 1e-6;
std::vector<ergo_real> M(n*n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
normalMatrix E1(E_nosymm);
add_to_one_element_nosymm(i, j, h, E1, perm);
normalMatrix E2(E_nosymm);
add_to_one_element_nosymm(i, j, -h, E2, perm);
ergo_real f1_1 = evaluate_func_nosymm(n, D, E0, patternMat, E1, perm, funcName);
ergo_real f1_2 = evaluate_func_nosymm(n, D, E0, patternMat, E2, perm, funcName);
ergo_real gradientValue = (f1_1 - f1_2) / (2*h);
if(funcName == "f2")
printf("i j = %2d %2d f2 gradientValue = %22.11f\n", i, j, (double)gradientValue);
M[i*n+j] = gradientValue;
}
assign_from_full_matrix(result_numerical_gradient_of_f1, &M[0], n, perm);
}
#endif
static void do_truncation(int n,
symmMatrix & X,
ergo_real truncation_threshold,
const symmMatrix & D_in,
bool use_alt_trunc,
const std::vector<int> & perm) {
if(use_alt_trunc == false) {
X.frob_thresh(truncation_threshold);
return;
}
// OK, use alternative truncation approach.
symmMatrix A(X);
A.frob_thresh(truncation_threshold);
if(A.nnz() == X.nnz())
return;
symmMatrix zeroMat(A);
zeroMat.clear();
bool do_truncation_internally = true;
// Use truncated D-matrix to make calculations faster.
// We can truncate it a lot and still get reasonable results, but using only the diagonal will not work since then it commutes with any E-matrix.
symmMatrix D(D_in);
if(do_truncation_internally)
D.frob_thresh(2.5);//truncation_threshold*100); // FIXME change amount of truncation of D here, seems like lots o truncation can be used while still giving OK results.
// Now A contains the truncated X, that defines the sparsity pattern we want to use.
// Get all elements of A in order to get the sparsity pattern
std::vector<int> rowind;
std::vector<int> colind;
std::vector<ergo_real> values;
A.get_all_values(rowind, colind, values);
symmMatrix E(zeroMat);
symmMatrix YY(zeroMat);
YY.clear();
normalMatrix ED(zeroMat);
normalMatrix DE(zeroMat);
normalMatrix E_new_3(zeroMat);
normalMatrix DED(zeroMat);
const int nOptSteps = 2; // NOTE: CHANGE nOptSteps HERE!
for(int optStep = 0; optStep < nOptSteps; optStep++) {
E = X - A; // this gives E such that X = A + E
if(do_truncation_internally)
E.frob_thresh(truncation_threshold*0.01); // FIXME change amount of truncation of E here
// Compute gradient (?) matrix ED+DE-2*DED
ED = E * D;
if(do_truncation_internally)
ED.frob_thresh(truncation_threshold*0.01); // FIXME choose amount of truncation here
DED = D * ED;
symmMatrix DED_symm(DED);
DE = transpose(ED); // Same as D * E
E_new_3 = ED + DE;
symmMatrix E_new_symm(E_new_3);
E_new_symm += (ergo_real)(-2.0) * DED_symm;
// Now E_new_symm contains ED+DE-2*DED
if(0) {
symmMatrix analytical_gradient_of_f1(zeroMat);
analytical_gradient_of_f1 = (ergo_real)2.0 * E_new_symm; // NOTE: multiply (ED+DE-2*DED) by factor 2 to get gradient
}
values.clear();
E_new_symm.get_values(rowind, colind, values);
YY.assign_from_sparse(rowind, colind, values);
A += (ergo_real)2.0*YY; // FIXME: HOW TO SET FACTOR HERE? ARBITATY 0.3 VALUE!?
} // end for optStep
X = A;
return;
}
#if 0
if(0) {
symmMatrix analytical_gradient_of_f1(zeroMat);
analytical_gradient_of_f1 = 2.0 * E_new_symm; // NOTE: multiply (ED+DE-2*DED) by factor 2 to get gradient
symmMatrix numerical_gradient_of_f1(zeroMat);
get_numerical_gradient_of_func(n, D, E0, A, E, numerical_gradient_of_f1, perm, "f1");
print_matrix(numerical_gradient_of_f1, "numerical_gradient_of_f1", n, 1e2);
print_matrix(analytical_gradient_of_f1, "analytical_gradient_of_f1", n, 1e2);
ergo_real diff_f1 = symmMatrix::frob_diff(numerical_gradient_of_f1, analytical_gradient_of_f1);
std::cout << "frobdiff between numerical and analytical gradients of f1: " << diff_f1 << " (numerical_gradient_of_f1.frob() = " << numerical_gradient_of_f1.frob() << ")." << std::endl;
symmMatrix g_of_E_minus_E0(zeroMat);
get_g_of_E_minus_E0(n, E0, A, E, perm, g_of_E_minus_E0);
symmMatrix analytical_gradient_of_f2(zeroMat);
analytical_gradient_of_f2 = 2.0 * g_of_E_minus_E0; // NOTE multiply by 2 to get gradient
symmMatrix numerical_gradient_of_f2(zeroMat);
get_numerical_gradient_of_func(n, D, E0, A, E, numerical_gradient_of_f2, perm, "f2");
print_matrix(numerical_gradient_of_f2, "numerical_gradient_of_f2", n, 1e5);
print_matrix(analytical_gradient_of_f2, "analytical_gradient_of_f2", n, 1e5);
ergo_real diff_f2 = symmMatrix::frob_diff(numerical_gradient_of_f2, analytical_gradient_of_f2);
std::cout << "frobdiff between numerical and analytical gradients of f2: " << diff_f2 << " (numerical_gradient_of_f2.frob() = " << numerical_gradient_of_f2.frob() << ")." << std::endl;
if(analytical_gradient_of_f2.frob() > 1e-9)
exit(0);
}
symmMatrix analytical_gradient_of_f1(zeroMat);
analytical_gradient_of_f1 = 2.0 * E_new_symm; // NOTE: multiply (ED+DE-2*DED) by factor 2 to get gradient
symmMatrix g_of_E_minus_E0(zeroMat);
get_g_of_E_minus_E0(n, E0, A, E, perm, g_of_E_minus_E0);
symmMatrix analytical_gradient_of_f2(zeroMat);
analytical_gradient_of_f2 = 2.0 * g_of_E_minus_E0; // NOTE multiply by 2 to get gradient
symmMatrix gradient(analytical_gradient_of_f1);
gradient += penalty_alpha * analytical_gradient_of_f2;
E -= 0.004 * gradient;
#endif
static void report_subspace_error(int currIterCount, int n, const symmMatrix & X, const symmMatrix & D) {
normalMatrix XD(X);
XD = X * D;
normalMatrix DX(X);
DX = transpose(XD);
normalMatrix diff(XD);
diff -= DX;
printf("report_subspace_error for currIterCount = %2d: diff.frob() = %g\n", currIterCount, (double)diff.frob());
}
static void report_subspace_error_via_diagonalization(int currIterCount, int n, int n_occ, const symmMatrix & X, const symmMatrix & D_ref, const std::vector<int> & perm) {
symmMatrix D(X);
D.clear();
symmMatrix minusX(X);
minusX *= -1.0;
DensMatInfo info;
get_density_mat_by_diagonalization(minusX, D, info, n, n_occ, perm);
ergo_real diff = symmMatrix::frob_diff(D, D_ref);
printf("report_subspace_error_via_diagonalization for currIterCount = %2d: diff = %g\n", currIterCount, (double)diff);
}
static void get_density_mat_by_purification(const symmMatrix & F,
symmMatrix & result_D,
int n,
int n_occ,
const std::vector<int> & perm,
const DensMatInfo & info,
ergo_real truncation_threshold,
const symmMatrix & D_ref,
bool use_alt_trunc,
bool verify_each_step) {
printf("Starting get_density_mat_by_purification() now, truncation_threshold = %g, use_alt_trunc = %d.\n", (double)truncation_threshold, (int)use_alt_trunc);
// FIXME: Truncate D_ref here?
// symmMatrix D_ref(D_ref_in);
// D_ref.frob_thresh(truncation_threshold);
// Start by transformation to get all eigenvalues in [0,1] in reverse order
symmMatrix X(F);
X.add_identity(-info.lambda_max);
X *= ((ergo_real)(-1.0) / (info.lambda_max - info.lambda_min));
// Prepare X2, needed later
symmMatrix X2(F);
X2.clear();
// Loop until converged
const int maxIter = 222;
int iterCount = 0;
int extraFinalStepsCounter = 0;
ergo_real X2_time_total = 0;
ergo_real truncation_time_total = 0;
ergo_real X_nnz_percentage_min = 100;
ergo_real X_nnz_percentage_max = 0;
ergo_real X2_nnz_percentage_min = 100;
ergo_real X2_nnz_percentage_max = 0;
while(true) {
Util::TimeMeter tm_X2;
X2 = (ergo_real)1.0 * X * X;
X2_time_total += tm_X2.get_wall_seconds() - tm_X2.get_start_time_wall_seconds();
update_nnz_percentages(n, X, X_nnz_percentage_min, X_nnz_percentage_max);
update_nnz_percentages(n, X2, X2_nnz_percentage_min, X2_nnz_percentage_max);
printf("Iteration %2d : nnz for X = %5.1f %% nnz for X2 = %5.1f %%\n", iterCount, (double)get_nnz_percentage(n, X), (double)get_nnz_percentage(n, X2));
ergo_real X_X2_diff = symmMatrix::frob_diff(X, X2);
if(X_X2_diff < 1e-1)
extraFinalStepsCounter++;
if(extraFinalStepsCounter == 7)
break;
ergo_real trace = X.trace();
if(trace > n_occ) {
// Choose polynomial X2
X = X2;
}
else {
// Choose polynomial 2*X - X2
X *= 2.0;
X += ((ergo_real)-1.0) * X2;
}
// Turn off use_alt_trunc in final iterations to allow eigenvalues to converge
bool use_alt_trunc_effective = use_alt_trunc;
if(iterCount > 12) // extraFinalStepsCounter > 4) // FIXME CHOOSE WHEN TO STOP USING ALT TRUNC HERE
use_alt_trunc_effective = false;
Util::TimeMeter tm_truncation;
do_truncation(n, X, truncation_threshold, D_ref, use_alt_trunc_effective, perm);
truncation_time_total += tm_truncation.get_wall_seconds() - tm_truncation.get_start_time_wall_seconds();
if(verify_each_step) {
report_subspace_error(iterCount, n, X, D_ref);
report_subspace_error_via_diagonalization(iterCount, n, n_occ, X, D_ref, perm);
}
iterCount++;
if(iterCount > maxIter)
throw std::runtime_error("ERROR in get_density_mat_by_purification: (iterCount > maxIter).");
}
printf("Purification done, iterCount = %d, X2_time_total = %f seconds, truncation_time_total = %f seconds\n", iterCount, (double)X2_time_total, (double)truncation_time_total);
printf("NNZ values for X : min %5.1f %% max %5.1f %%\n", (double)X_nnz_percentage_min, (double)X_nnz_percentage_max);
printf("NNZ values for X2: min %5.1f %% max %5.1f %%\n", (double)X2_nnz_percentage_min, (double)X2_nnz_percentage_max);
printf("Calling report_subspace_error_via_diagonalization for final result X matrix at end of get_density_mat_by_purification:\n");
if(verify_each_step)
report_subspace_error_via_diagonalization(iterCount, n, n_occ, X, D_ref, perm);
result_D = X;
}
static void verify_idempotency(const symmMatrix & X) {
symmMatrix X2(X);
X2 = (ergo_real)1.0 * X * X;
ergo_real diff = symmMatrix::frob_diff(X, X2);
printf("verify_idempotency(): diff = %g\n", (double)diff);
ergo_real tolerance = template_blas_sqrt(mat::getMachineEpsilon<ergo_real>());
assert(diff < tolerance);
}
static void verify_gap(const DensMatInfo & info) {
ergo_real gap_abs = info.lambda_lumo - info.lambda_homo;
ergo_real spectrum_width = info.lambda_max - info.lambda_min;
ergo_real gap_rel = gap_abs / spectrum_width;
printf("verify_gap(): gap_abs = %f, gap_rel = %f\n", (double)gap_abs, (double)gap_rel);
assert(gap_rel > 1e-6);
}
#if 0
static void check_decay_internal(int n,
const std::vector<ergo_real> & D_full,
int dist_step,
int dist_max) {
// Consider distances from 0 up to dist_max
for(int dist = 0; dist < dist_max; dist += dist_step) {
ergo_real maxAbsValue = 0;
for(int i = 0; i < n; i++)
for(int j = i; j < n; j++) {
int ijdiff = j - i;
if(ijdiff >= dist && ijdiff < n/2) {
ergo_real absValue = template_blas_fabs(D_full[i*n+j]);
if(absValue > maxAbsValue)
maxAbsValue = absValue;
}
} // end for i j
printf("dist %5d : maxAbsValue = %12.8f\n", dist, (double)maxAbsValue);
} // end for dist
}
static void check_decay(const symmMatrix & D, const char* name, int n) {
printf("Starting check_decay() for '%s', n = %d\n", name, n);
std::vector<ergo_real> D_full(n*n);
get_all_matrix_elements_symm(D, n, D_full);
// First part with step 1
int dist_step = 1;
int dist_max = 20;
if(dist_max > n/2)
dist_max = n/2;
printf("========== first part with dist_step = 1 ===============\n");
check_decay_internal(n, D_full, dist_step, dist_max);
dist_step *= 2;
dist_max *= 2;
printf("========== first part with dist_step = 2 ===============\n");
check_decay_internal(n, D_full, dist_step, dist_max);
dist_step *= 2;
dist_max *= 2;
printf("========== first part with dist_step = 4 ===============\n");
check_decay_internal(n, D_full, dist_step, dist_max);
dist_step = n / 40;
if(dist_step == 0)
dist_step = 1;
dist_max = n/2;
printf("========== now with dist_step = %d ===============\n", dist_step);
check_decay_internal(n, D_full, dist_step, dist_max);
printf("check_decay() done.\n");
}
#endif
/*
ELIAS NOTE 2016-11-04: the following input seems to work for blockSize = 1 now:
./simple_ort_puri_test 14 1e-2 1e-1 1
*/
int main(int argc, char *argv[])
{
try {
Util::TimeMeter tm_everything;
// OK n values: 10 14 18 22 26 30 50 70 90 110 150 210 290 410 610 1010 1410 2010 2410 3010
int n = 8;
ergo_real truncation_threshold = 1e-5;
ergo_real result_diff_tolerance = 1e-4;
int use_alt_trunc = 0;
int verify_each_step = 0;
#ifdef PRECISION_SINGLE
result_diff_tolerance = 1e-3;
#endif
if(argc >= 2)
n = atoi(argv[1]);
if(argc >= 3)
truncation_threshold = atof(argv[2]);
if(argc >= 4)
result_diff_tolerance = atof(argv[3]);
if(argc >= 5)
use_alt_trunc = atoi(argv[4]);
if(argc >= 6)
verify_each_step = atoi(argv[5]);
int n_occ = n/2;
int blockSize = 8;
std::cout << "n = " << n << std::endl;
std::cout << "truncation_threshold = " << (double)truncation_threshold << std::endl;
std::cout << "result_diff_tolerance = " << (double)result_diff_tolerance << std::endl;
std::cout << "n_occ = " << n_occ << std::endl;
std::cout << "blockSize = " << blockSize << std::endl;
if(n <= 1)
throw std::runtime_error("ERROR: (n <= 1)");
#ifdef _OPENMP
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) )
defThreads = 1;
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(1);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
// Prepare stuff needed to use matrix library
mat::SizesAndBlocks sizeBlockInfo;
static const int sparseMatrixBlockFactor = 2;
sizeBlockInfo =
prepareMatrixSizesAndBlocks(n,
blockSize,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor,
sparseMatrixBlockFactor);
std::vector<int> perm(n);
for(int i = 0; i < n; i++)
perm[i] = i;
// Create artificial effective Hamiltonian matrix F
symmMatrix F;
F.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
// get_tridiagonal_matrix_periodic(F, n, perm);
get_Huckel_matrix_periodic(F, n, perm);
print_matrix(F, "F", n);
// Get reference density matrix using diagonalization
symmMatrix D_ref;
D_ref.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
DensMatInfo densMatInfo;
Util::TimeMeter tm_get_density_mat_by_diagonalization;
get_density_mat_by_diagonalization(F, D_ref, densMatInfo, n, n_occ, perm);
report_timing(tm_get_density_mat_by_diagonalization, "tm_get_density_mat_by_diagonalization");
print_matrix(D_ref, "D_ref", n);
print_DensMatInfo(densMatInfo);
// Verify that D_ref is idempotent
verify_idempotency(D_ref);
// Verify that we have significant gap
verify_gap(densMatInfo);
// Get density matrix using purification
symmMatrix D_puri;
D_puri.resetSizesAndBlocks(sizeBlockInfo, sizeBlockInfo);
Util::TimeMeter tm_get_density_mat_by_purification;
get_density_mat_by_purification(F, D_puri, n, n_occ, perm, densMatInfo, truncation_threshold, D_ref, use_alt_trunc, verify_each_step);
report_timing(tm_get_density_mat_by_purification, "tm_get_density_mat_by_purification");
// Check accuracy of result
ergo_real diff_D_puri_vs_D_ref = symmMatrix::frob_diff(D_puri, D_ref);
std::cout << "diff_D_puri_vs_D_ref = " << (double)diff_D_puri_vs_D_ref << std::endl;
symmMatrix D_ref_truncated(D_ref);
D_ref_truncated.frob_thresh(truncation_threshold);
ergo_real diff_D_ref_vs_D_ref_truncated = symmMatrix::frob_diff(D_ref, D_ref_truncated);
std::cout << "diff_D_ref_vs_D_ref_truncated = " << (double)diff_D_ref_vs_D_ref_truncated << std::endl;
assert(diff_D_puri_vs_D_ref < result_diff_tolerance);
// Investigate decay of matrix elements in D
// check_decay(D_ref, "D_ref", n);
// check_decay(D_puri, "D_puri", n);
report_timing(tm_everything, "tm_everything");
}
catch(std::runtime_error & e) {
std::cout << "Error: std::runtime_error caught: " << e.what() << std::endl;
return -1;
}
catch(std::exception & e) {
std::cout << "Error: std::exception caught: " << e.what() << std::endl;
return -1;
}
catch(...) {
printf("ERROR: exception caught in simple_ort_puri_test main().\n");
return -1;
}
puts("simple_ort_puri_test finished OK.");
return 0;
}
|