File: xcmat_nan_inf_test.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (310 lines) | stat: -rw-r--r-- 10,579 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file xcmat_nan_inf_test.cc Tests that the DFT XC matrix
    construction does not result in "nan" or "inf" values. */

#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>

#include "integrals_1el_potential.h"
#include "integrals_2el.h"
#include "memorymanag.h"
#include "grid_reader.h"
#include "dft_common.h"
#include "xc_matrix.h"

static bool value_seems_like_nan_or_inf(ergo_real x) {
  bool ok1 = false;
  if(x > -template_blas_get_num_limit_max<ergo_real>())
    ok1 = true;
  bool ok2 = false;
  if(x < template_blas_get_num_limit_max<ergo_real>())
    ok2 = true;
  return ( ! (ok1 && ok2) );
}

static bool
compare_matrices(char mat_name,
                 const real *computed, const long double *ref, int sz,
                 ergo_real eps)
{
  bool failed = false;

  for(int row=0; row<sz; row++) {
    for(int col=0; col<sz; col++) {
      ergo_real theDiff = computed[row + col*sz]- ref[row+col*sz];
      bool nanOrInfFlag = value_seems_like_nan_or_inf(theDiff);
      if(nanOrInfFlag) {
        printf("Error! nan/inf found in compare_matrices().\n");
        failed = true;
      }
      if (template_blas_fabs(theDiff)>eps) {
        printf("%c (%d,%d): ref: %28.25Lf got: %28.25Lf diff: %12g eps: %g\n",
               mat_name, row, col,
               (long double)ref[row + col*sz],
               (long double)computed[row + col*sz],
               (double)(computed[row + col*sz]- ref[row+col*sz]),
               (double)eps);
        failed = true;
      }
    }
  }
  return failed;
}

static int
test_small(const IntegralInfo& ii, const char *functional,
           const Dft::GridParams::RadialScheme& gridScheme,
           const char *gridSchemeName,
	   const int *charges, const real (*coords)[3],
           const long double (*XCRef)[2])
{
  // Skip tests for some functionals for single precision because they cannot handle it due to overflow or similar problems.
#ifdef PRECISION_SINGLE
  std::vector<std::string> functionalsToSkip;
  functionalsToSkip.push_back("PW91X");
  functionalsToSkip.push_back("B3LYP");
  functionalsToSkip.push_back("B3LYP-G");
  functionalsToSkip.push_back("B3P86");
  functionalsToSkip.push_back("B3P86-G");
  functionalsToSkip.push_back("B3PW91");
  functionalsToSkip.push_back("BLYP");
  functionalsToSkip.push_back("BP86");
  functionalsToSkip.push_back("BPW91");
  functionalsToSkip.push_back("Camb3lyp");
  functionalsToSkip.push_back("HSE");
  functionalsToSkip.push_back("KT3");
  functionalsToSkip.push_back("OLYP");
  functionalsToSkip.push_back("PBE0");
  functionalsToSkip.push_back("PBE");
  bool skip_for_single_precision = false;
  for(unsigned int i = 0; i < functionalsToSkip.size(); i++) {
    if(strcmp(functional, functionalsToSkip[i].c_str()) == 0)
      skip_for_single_precision = true;
  }
  if(skip_for_single_precision) {
    printf("test_small(): skipping functional '%s' for PRECISION_SINGLE case.\n", functional);
    return 0;
  }
#endif

  BasisInfoStruct* bis = new BasisInfoStruct();
  Molecule m;
  /* The code later will change the order of atoms, this is why the
     reference table may seem strange at the first sight. */
  for(int i=0; i<2; i++) {
    m.addAtom(charges[i], coords[i][0],coords[i][1],coords[i][2]);
  }

  if(bis->addBasisfuncsForMolecule(m, ERGO_SPREFIX "/basis/STO-3G",
                                   0, NULL, ii, 0, 0, 0) != 0) {
    printf("bis->addBasisfuncsForMolecule failed.\n");
    return 1;
  }

  int n = bis->noOfBasisFuncs;

  /* set up density matrix */
  ergo_real *dmat= ergo_new(n*n, ergo_real);
  dmat[0*n+0] = 1.1; dmat[0*n+1] = 0.2;
  dmat[1*n+0] = 0.2; dmat[1*n+1] = 1.3;

  dft_init();
  if(dft_setfunc(functional) == 0)
    {
      printf("error in dft_setfunc\n");
      return 1;
    }
  grid_set_tmpdir("/tmp");
  static const ergo_real GRID_CELL_SIZE = 2.5;
  Dft::GridParams gridParams(1e-5, 6, 7, GRID_CELL_SIZE);
  gridParams.radialGridScheme = gridScheme;

  ergo_real *xcmat= ergo_new(n*n, ergo_real);
  ergo_real *xca = ergo_new(n*n, ergo_real);
  ergo_real *xcb = ergo_new(n*n, ergo_real);
  ergo_real *dmata = ergo_new(n*n, ergo_real);
  for(int i=n*n-1; i>=0; --i) dmata[i] = 0.5*dmat[i];

  int noOfElectrons = 2;
  char mode;
  ergo_real dftEnergy = 0;
  dft_get_xc_mt(noOfElectrons, dmat, bis, &m, gridParams, xcmat, &dftEnergy);
  if(value_seems_like_nan_or_inf(dftEnergy)) {
    printf("Error: dftEnergy from dft_get_xc_mt() is nan/inf for functional '%s'.\n", functional);
    return 1;
  }
  /* We give some room to accumulation error. */
  static const ergo_real EPS = 0.3;
  int nrepeat = 2;
  bool failed = false;
  for(int i = 0; i < nrepeat; i++)
    {
      mode = 'R';
      ergo_real dftEnergyAgain = 0, electronsR, electronsU, dftEnergyU;
      memset(xcmat, 0, n*n*sizeof(ergo_real));
      electronsR = dft_get_xc_mt(noOfElectrons, dmat, bis, &m, gridParams,
                                 xcmat, &dftEnergyAgain);
      if(value_seems_like_nan_or_inf(dftEnergyAgain)) {
	printf("Error: dftEnergyAgain from dft_get_xc_mt() is nan/inf for functional '%s'.\n", functional);
	return 1;
      }
      failed = compare_matrices('R', xcmat, &XCRef[0][0], n, EPS);
      if(template_blas_fabs(dftEnergyAgain - dftEnergy) > EPS)
	{
	  printf("%s/%s energy repeatability test failed.\n",
		 selected_func->is_gga() ? "GGA" : "LDA", functional);
	  printf("i = %5i of %5i: computed: %20.19f diff: %g\n", 
		 i, nrepeat,
                 (double)dftEnergyAgain, (double)(dftEnergy-dftEnergyAgain));
          failed = true;
	}
      if(failed)
	break;

      mode = 'U';
      memset(xca, 0, n*n*sizeof(ergo_real));
      memset(xcb, 0, n*n*sizeof(ergo_real));
      electronsU = dft_get_uxc_mt(noOfElectrons,
                                  dmata, dmata,
                                  bis, &m, gridParams,
                                  xca, xcb, &dftEnergyU);
      if(value_seems_like_nan_or_inf(dftEnergyU)) {
	printf("Error: dftEnergyU from dft_get_uxc_mt() is nan/inf for functional '%s'.\n", functional);
	return 1;
      }
      failed = compare_matrices('A', xca, &XCRef[0][0], n, EPS)
        || compare_matrices('B', xcb, &XCRef[0][0], n, EPS);
      if (template_blas_fabs(electronsU - electronsR) > EPS) {
          printf("%s/%s Electrons restricted %28.25Lg unrestricted %28.25Lg\n",
                 selected_func->is_gga() ? "GGA" : "LDA", functional,
                 (long double)electronsR,
                 (long double)electronsU);
      }   
      if(failed)
        break;      
    }

  ergo_free(dmat);
  ergo_free(dmata);
  ergo_free(xcmat);
  ergo_free(xca);
  ergo_free(xcb);
  grid_free_files();
  delete bis;
  printf("%cXC %s %s/%s simple inf/nan test %s\n", failed ? mode : ' ',
         gridSchemeName,
	 selected_func->is_gga() ? "GGA" : "LDA",
	 functional, failed ? "failed" : "OK"); 
  if(!failed)
    unlink("ergoscf.out");
  return  failed ? 1 : 0;
}

static int test_functional(const IntegralInfo & ii, const char* funcName) {
  static const int sys1Z[2] = { 2, 1 };
  static const ergo_real sys1C[2][3] = { { 0, 0, 0 }, { 0, 0, 1.5 } };

  static const long double XCRefSys1BP86_TURBO[2][2] = {
    { -0.4844723531473195618241717L, -0.2847608922553022361067940L },
    { -0.2847608922553022361067940L, -0.6584790455338922763911698L }
  };
  return test_small(ii, funcName, Dft::GridParams::TURBO, "Turbo", 
                    sys1Z, sys1C, &XCRefSys1BP86_TURBO[0]);
}

static int
test_small_many()
{
  int res = 0;
  IntegralInfo ii(true);

  //  res += test_functional(*ii, "Becke");
  //  res += test_functional(*ii, "KT");
  res += test_functional(ii, "LB94");
  //  res += test_functional(*ii, "LYP");
  //  res += test_functional(*ii, "OPTX");
  //  res += test_functional(*ii, "P86c");
  //  res += test_functional(*ii, "PW86x");

  res += test_functional(ii, "PW91X");
  //  res += test_functional(*ii, "PW91c");
  //  res += test_functional(*ii, "PW92c");
  //  res += test_functional(*ii, "PZ81");
  //  res += test_functional(*ii, "PBEC");
  res += test_functional(ii, "Pbex");
  res += test_functional(ii, "Slater");

  //  res += test_functional(*ii, "SVWNI");
  //  res += test_functional(*ii, "SVWN3I");
  //  res += test_functional(*ii, "SVWN");
  //  res += test_functional(*ii, "XAlpha");

  res += test_functional(ii, "B3LYP");
  res += test_functional(ii, "B3LYP-G");
  res += test_functional(ii, "B3P86");
  res += test_functional(ii, "B3P86-G");
  res += test_functional(ii, "B3PW91");

  //  res += test_functional(*ii, "BHandH");
  //  res += test_functional(*ii, "BHandHLYP");

  res += test_functional(ii, "BLYP");
  res += test_functional(ii, "BP86");
  res += test_functional(ii, "BPW91");
  res += test_functional(ii, "Camb3lyp");
  //  res += test_functional(*ii, "Cam");

  res += test_functional(ii, "HSE");
  res += test_functional(ii, "KT1");
  res += test_functional(ii, "KT2");
  res += test_functional(ii, "KT3");
  res += test_functional(ii, "LDA");

  res += test_functional(ii, "OLYP");
  res += test_functional(ii, "PBE0");
  res += test_functional(ii, "PBE");
  res += test_functional(ii, "SVWN3");
  res += test_functional(ii, "SVWN5");

  return res;
}

int main(int argc, char *argv[])
{
  int result = test_small_many();
  if(result == 0)
    printf("xcmat_nan_inf_test finished OK\n");
  else
    printf("Error in xcmat_nan_inf_test: result = %d\n", result);
  return result;
}