1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file densitymanager.cc
@brief Functionality for working with the electron density as a
function of space, for a given basis set and density matrix.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include "memorymanag.h"
#include "output.h"
#include "densitymanager.h"
#include "pi.h"
#include "integrals_general.h"
#include "template_blas_common.h"
#define EXPONENT_DIFF_LIMIT 1e-22
#define DISTR_CENTER_DIST_LIMIT 1e-22
static ergo_real
compute_1d_gaussian_integral_recursive(ergo_real a, ergo_real b, int n, ergo_real alpha)
{
ergo_real result, sqrtalpha, term1, term2;
ergo_real aToPowerNminus1, bToPowerNminus1;
if(n == 0)
{
sqrtalpha = template_blas_sqrt(alpha);
result = template_blas_sqrt(pi/(4*alpha)) * (template_blas_erf(sqrtalpha*b) - template_blas_erf(sqrtalpha*a));
return result;
}
if(n == 1)
{
result = -(1 / (2*alpha)) * (template_blas_exp(-alpha*b*b) - template_blas_exp(-alpha*a*a));
return result;
}
if(n < 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in 1dintegral: n < 0");
exit(0);
}
/* now we know that n >= 2 */
term1 = (n - 1) * compute_1d_gaussian_integral_recursive(a, b, n-2, alpha);
aToPowerNminus1 = template_blas_pow(a, (ergo_real)n-1);
bToPowerNminus1 = template_blas_pow(b, (ergo_real)n-1);
term2 =
bToPowerNminus1 * template_blas_exp(-alpha*b*b) -
aToPowerNminus1 * template_blas_exp(-alpha*a*a);
result = (term1 - term2) / (2 * alpha);
/* return 0; */
return result;
} /* END compute_1d_gaussian_integral_recursive */
static ergo_real
compute_integral_over_box(DistributionSpecStruct* distr,
ergo_real* minVect, ergo_real* maxVect,
std::vector<int> monomialIntsAdd = std::vector<int>(3, 0))
{
ergo_real result, a, b, alpha;
int i, n;
result = distr->coeff;
alpha = distr->exponent;
for(i = 0; i < 3; i++) // run over the coordinates
{
n = distr->monomialInts[i];
a = minVect[i] - distr->centerCoords[i];
b = maxVect[i] - distr->centerCoords[i];
result *= compute_1d_gaussian_integral_recursive(a, b, n, alpha);
} /* END FOR i */
return result;
} /* END compute_integral_over_box */
ergo_real
integrate_density_in_box(int nPrims,
DistributionSpecStruct* rho,
ergo_real mid_x,
ergo_real mid_y,
ergo_real mid_z,
ergo_real box_width)
{
ergo_real minVect[3];
ergo_real maxVect[3];
minVect[0] = mid_x - 0.5 * box_width;
maxVect[0] = mid_x + 0.5 * box_width;
minVect[1] = mid_y - 0.5 * box_width;
maxVect[1] = mid_y + 0.5 * box_width;
minVect[2] = mid_z - 0.5 * box_width;
maxVect[2] = mid_z + 0.5 * box_width;
ergo_real sum = 0;
int i;
for(i = 0; i < nPrims; i++)
sum += compute_integral_over_box(&rho[i], minVect, maxVect);
return sum;
}
ergo_real
integrate_density_in_box_2(int nPrims,
DistributionSpecStruct* rho,
ergo_real* minVect,
ergo_real* maxVect,
std::vector<int> monomialIntsAdd)
{
ergo_real sum = 0;
int i;
for(i = 0; i < nPrims; i++)
sum += compute_integral_over_box(&rho[i], minVect, maxVect, monomialIntsAdd);
return sum;
}
int
get_no_of_primitives_for_density(ergo_real cutoff,
const ergo_real *dmat,
const BasisInfoStruct & basisInfo)
{
#define MAX_DISTR_IN_TEMP_LIST 888
int i, j;
int symmetryFactor;
int nBasisFuncs, nn;
nBasisFuncs = basisInfo.noOfBasisFuncs;
nn = 0;
for(i = 0; i < nBasisFuncs; i++)
{
for(j = 0; j < nBasisFuncs; j++)
{
DistributionSpecStruct tempList[MAX_DISTR_IN_TEMP_LIST];
int nPrimitives, k;
/* the matrix M is symmetric: include diagonal terms once, */
/* and include upper off-diagonal terms multiplied by 2 */
if(i == j)
symmetryFactor = 1;
else
symmetryFactor = 2;
if(i > j)
continue;
nPrimitives =
get_product_simple_primitives(basisInfo, i,
basisInfo, j,
tempList,
MAX_DISTR_IN_TEMP_LIST,
0);
if(nPrimitives <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in get_product_simple_primitives");
return -1;
}
for(k = 0; k < nPrimitives; k++)
{
DistributionSpecStruct* currDistr = &tempList[k];
ergo_real Mij = dmat[i*nBasisFuncs+j];
ergo_real newCoeff = currDistr->coeff * Mij * symmetryFactor;
if(template_blas_fabs(newCoeff) > cutoff)
nn++;
}
}
}
return nn;
}
static int
do_merge_sort_distrs(int n,
DistributionSpecStruct* list,
DistributionSpecStruct* workList)
{
/* merge sort: */
/* first sort the first half, */
/* then sort the second half, */
/* then merge results to form final sorted list. */
int n1, n2, nn, decision, i1, i2, i;
DistributionSpecStruct* d1;
DistributionSpecStruct* d2;
if(n == 0)
return 0;
if(n < 1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "(n < 1)");
return -1;
}
if(n == 1)
return 0;
n1 = n / 2;
n2 = n - n1;
/* sort first half */
if(do_merge_sort_distrs(n1, list, workList) != 0)
return -1;
/* sort second half */
if(do_merge_sort_distrs(n2, &list[n1], workList) != 0)
return -1;
/* merge results */
nn = 0;
i1 = 0;
i2 = 0;
while(nn < n)
{
if((i1 < n1) && (i2 < n2))
{
/* compare */
d1 = &list[i1];
d2 = &list[n1+i2];
decision = 0;
for(i = 0; i < 3; i++)
{
if(decision == 0)
{
if(d1->monomialInts[i] != d2->monomialInts[i])
{
if(d1->monomialInts[i] > d2->monomialInts[i])
decision = 1;
else
decision = 2;
}
} /* END IF (decision == 0) */
} /* END FOR i */
if(decision == 0)
{
/* check exponents */
if(d1->exponent > d2->exponent)
decision = 1;
else
decision = 2;
}
}
else
{
if(i1 == n1)
decision = 2;
else
decision = 1;
}
if(decision <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "(decision <= 0)");
return -1;
}
if(decision == 1)
{
memcpy(&workList[nn], &list[i1], sizeof(DistributionSpecStruct));
i1++;
}
else
{
memcpy(&workList[nn], &list[n1+i2], sizeof(DistributionSpecStruct));
i2++;
}
nn++;
} /* END WHILE (nn < n) */
if(i1 != n1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "(i1 != n1)");
return -1;
}
if(i2 != n2)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "(i2 != n2)");
return -1;
}
if(nn != n)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "(nn != n)");
return -1;
}
memcpy(list, workList, n * sizeof(DistributionSpecStruct));
return 0;
} /* END do_merge_sort_distrs */
int get_density(const BasisInfoStruct & basisInfo,
const ergo_real* dmat,
ergo_real cutoff,
int maxCountRho,
DistributionSpecStruct* resultRho)
{
#define MAX_DISTR_IN_TEMP_LIST 888
int i, j, k, kk;
DistributionSpecStruct* workList;
DistributionSpecStruct* rhoSaved;
ergo_real absvalue;
ergo_real absdiff;
ergo_real sqrtValue;
int sameYesNo, firstIndex, count, withinLimit, resultCount;
ergo_real coeffSum;
int* markList;
int symmetryFactor;
int nBasisFuncs, nn, nNeededForRho;
DistributionSpecStruct* rho;
nNeededForRho = maxCountRho;
/* allocate rho */
//rho = (DistributionSpecStruct*)ergo_malloc(nNeededForRho * sizeof(DistributionSpecStruct));
rho = resultRho;
nBasisFuncs = basisInfo.noOfBasisFuncs;
nn = 0;
for(i = 0; i < nBasisFuncs; i++)
{
for(j = 0; j < nBasisFuncs; j++)
{
DistributionSpecStruct tempList[MAX_DISTR_IN_TEMP_LIST];
int nPrimitives, k;
/* the matrix M is symmetric: include diagonal terms once, */
/* and include upper off-diagonal terms multiplied by 2 */
if(i == j)
symmetryFactor = 1;
else
symmetryFactor = 2;
if(i > j)
continue;
nPrimitives =
get_product_simple_primitives(basisInfo, i,
basisInfo, j,
tempList,
MAX_DISTR_IN_TEMP_LIST,
0);
if(nPrimitives <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in get_product_simple_primitives");
return -1;
}
for(k = 0; k < nPrimitives; k++)
{
DistributionSpecStruct* currDistr = &tempList[k];
ergo_real Mij = dmat[i*nBasisFuncs+j];
ergo_real newCoeff = currDistr->coeff * Mij * symmetryFactor;
if(template_blas_fabs(newCoeff) > cutoff)
{
/* add to final list */
if(nn > nNeededForRho)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error: (nn > nNeededForRho)");
return -1;
}
memcpy(&rho[nn], currDistr,
sizeof(DistributionSpecStruct));
rho[nn].coeff = newCoeff;
nn++;
}
}
}
}
/* Now all distributions are stored in the list 'rho'. */
/* The number of entries in the list is nn. */
/* It could happen that all entries are not unique. */
/* We want to join distributions that have the same center */
/* and the same exponent. */
/* To do this, start with sorting the list by nx, ny, nz, exponent. */
workList = (DistributionSpecStruct*)ergo_malloc(nn * sizeof(DistributionSpecStruct));
rhoSaved = (DistributionSpecStruct*)ergo_malloc(nn * sizeof(DistributionSpecStruct));
memcpy(rhoSaved, rho, nn * sizeof(DistributionSpecStruct));
if(do_merge_sort_distrs(nn, rho, workList) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in do_merge_sort_distrs");
return -1;
}
/* check that list is sorted */
for(i = 0; i < (nn-1); i++)
{
if(rho[i].exponent < rho[i+1].exponent)
{
sameYesNo = 1;
for(j = 0; j < 3; j++)
{
if(rho[i].monomialInts[j] != rho[i+1].monomialInts[j])
sameYesNo = 0;
} /* END FOR j */
if(sameYesNo == 1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error: distr list NOT properly sorted");
return -1;
}
}
} /* END FOR i */
markList = (int*)ergo_malloc(nn * sizeof(int));
for(i = 0; i < nn; i++)
markList[i] = 0;
/* now go through sorted list, joining distributions where possible */
i = 0;
count = 0;
firstIndex = 0;
while(i < nn)
{
/* check if this entry has the same nx ny nz as current 'firstIndex' */
sameYesNo = 1;
for(j = 0; j < 3; j++)
{
if(rho[i].monomialInts[j] != rho[firstIndex].monomialInts[j])
sameYesNo = 0;
} /* END FOR j */
/* check exponent */
absdiff = template_blas_fabs(rho[i].exponent - rho[firstIndex].exponent);
if(absdiff > EXPONENT_DIFF_LIMIT)
sameYesNo = 0;
if(sameYesNo == 0)
{
for(j = firstIndex; j < i; j++)
{
if(markList[j] == 0)
{
markList[j] = 1;
/* join distrs that have centers within */
/* DISTR_CENTER_DIST_LIMIT of this one */
coeffSum = rho[j].coeff;
for(k = j+1; k < i; k++)
{
withinLimit = 1;
for(kk = 0; kk < 3; kk++)
{
absdiff = template_blas_fabs(rho[j].centerCoords[kk] -
rho[k].centerCoords[kk]);
if(absdiff > DISTR_CENTER_DIST_LIMIT)
withinLimit = 0;
} /* END FOR kk */
if(withinLimit == 1)
{
coeffSum += rho[k].coeff;
markList[k] = 1;
}
} /* END FOR k */
memcpy(&workList[count],
&rho[j],
sizeof(DistributionSpecStruct));
workList[count].coeff = coeffSum;
count++;
} /* END IF (markList[j] == 0) */
} /* END FOR j */
firstIndex = i;
}
else
{
}
i++;
} /* END WHILE (i < nn) */
/* take care of last part */
for(j = firstIndex; j < nn; j++)
{
if(markList[j] == 0)
{
markList[j] = 1;
/* join distrs that have centers within */
/* DISTR_CENTER_DIST_LIMIT of this one */
coeffSum = rho[j].coeff;
for(k = j+1; k < nn; k++)
{
withinLimit = 1;
for(kk = 0; kk < 3; kk++)
{
absdiff = template_blas_fabs(rho[j].centerCoords[kk] -
rho[k].centerCoords[kk]);
if(absdiff > DISTR_CENTER_DIST_LIMIT)
withinLimit = 0;
} /* END FOR kk */
if(withinLimit == 1)
{
coeffSum += rho[k].coeff;
markList[k] = 1;
}
} /* END FOR k */
memcpy(&workList[count], &rho[j], sizeof(DistributionSpecStruct));
workList[count].coeff = coeffSum;
count++;
} /* END IF (markList[j] == 0) */
} /* END FOR j */
for(j = 0; j < nn; j++)
{
if(markList[j] != 1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error: (markList[%i] != 1)", j);
return -1;
}
} /* END FOR j */
/* now move results back to list 'rho', */
/* skipping those that have too small coeff */
resultCount = 0;
for(i = 0; i < count; i++)
{
sqrtValue = template_blas_sqrt(pi / workList[i].exponent);
absvalue = workList[i].coeff * sqrtValue * sqrtValue * sqrtValue;
if(absvalue < 0) absvalue *= -1;
if(absvalue > cutoff)
{
memcpy(&rho[resultCount],
&workList[i],
sizeof(DistributionSpecStruct));
resultCount++;
}
} /* END FOR i */
ergo_free(workList);
ergo_free(markList);
ergo_free(rhoSaved);
return resultCount;
}
|