File: matrix_utilities.cc

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (409 lines) | stat: -rw-r--r-- 13,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file matrix_utilities.cc

    @brief Utilities related to the hierarchical matrix library (HML),
    including functions for setting up permutations of basis functions
    to increase data locality in the hierarchical matrix data
    structure.
*/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>
#include "matrix_utilities.h"
#include "output.h"


mat::SizesAndBlocks prepareMatrixSizesAndBlocks(int n_basis_functions,
						int sparse_block_size,
						int factor1, 
						int factor2, 
						int factor3) {
  int bSizeVecTmp[5];
  bSizeVecTmp[4] = 1; 
  bSizeVecTmp[3] = sparse_block_size;
  bSizeVecTmp[2] = bSizeVecTmp[3] * factor1;
  bSizeVecTmp[1] = bSizeVecTmp[2] * factor2;
  bSizeVecTmp[0] = bSizeVecTmp[1] * factor3;
  std::vector<int> blockSizeVector(bSizeVecTmp, bSizeVecTmp + 5);
  do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "creating matrix SizesAndBlocks using blockSizeVector:");
  for(int i = 0; i < 5; i++)
    do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "blockSizeVector[%i] = %12i", i, blockSizeVector[i]);
  return mat::SizesAndBlocks(blockSizeVector, n_basis_functions);
}


/* ** Permutation help functions 
   Note that the following functions are used to create the inverse 
   permutation compared to the permutation used in the ergo main program.    
*/

template<typename RandomAccessIterator>
struct CompareClass {
  RandomAccessIterator first;
  explicit CompareClass(RandomAccessIterator firstel)
    : first(firstel){}
  bool operator() (int i,int j) { return (*(first + i) < *(first + j));}
};


template<typename Treal, typename TIndexIterator>
void sortCoord(std::vector<Treal> const & xpos, 
	       std::vector<Treal> const & ypos, 
	       std::vector<Treal> const & zpos,
	       TIndexIterator first, 
	       TIndexIterator last) {
  CompareClass<typename std::vector<Treal>::const_iterator> 
    compareX(xpos.begin());
  CompareClass<typename std::vector<Treal>::const_iterator> 
    compareY(ypos.begin());
  CompareClass<typename std::vector<Treal>::const_iterator>  
    compareZ(zpos.begin());
  Treal xmin = xpos[*std::min_element(first, last, compareX)];
  Treal xmax = xpos[*std::max_element(first, last, compareX)];
  Treal ymin = ypos[*std::min_element(first, last, compareY)];
  Treal ymax = ypos[*std::max_element(first, last, compareY)];
  Treal zmin = zpos[*std::min_element(first, last, compareZ)];
  Treal zmax = zpos[*std::max_element(first, last, compareZ)];
  Treal xrange = xmax - xmin;
  Treal yrange = ymax - ymin;
  Treal zrange = zmax - zmin;
  /* Sort in direction with largest range */
  if (xrange>=yrange && xrange>=zrange) 
    std::sort (first, last, compareX);
  else if (yrange>zrange) 
    std::sort (first, last, compareY);
  else 
    std::sort (first, last, compareZ);
}

template<typename Treal>
void permuteAndRecurse(std::vector<Treal> const & xpos, 
		       std::vector<Treal> const & ypos, 
		       std::vector<Treal> const & zpos,
		       std::vector<int> & index,
		       int const first, 
		       int const last,
		       std::vector<int> const & blockSizes,
		       int bSizeIndex) {
  if (last - first > blockSizes[bSizeIndex]) {
    sortCoord(xpos, ypos, zpos, 
	      index.begin() + first, 
	      index.begin() + last);
    int sizeBox1 = 0;
    while (sizeBox1 < (last - first) / 2)
      sizeBox1 += blockSizes[bSizeIndex];
    permuteAndRecurse(xpos, ypos, zpos, 
		      index, first, first + sizeBox1,
		      blockSizes, bSizeIndex);
    permuteAndRecurse(xpos, ypos, zpos, 
		      index, first + sizeBox1, last,
		      blockSizes, bSizeIndex);    
  }
  else {
    ++bSizeIndex;
    if (bSizeIndex < (int)blockSizes.size()) {
      permuteAndRecurse(xpos, ypos, zpos, 
			index, first, last,
			blockSizes, bSizeIndex);
    }
  }
}


/* Added by Anastasia, neeeded for creation of
 large artificial hamiltonian matrix. */
template<typename Treal>
void permuteAndRecurseStart(std::vector<Treal> const & xpos, 
		       std::vector<Treal> const & ypos, 
		       std::vector<Treal> const & zpos,
		       std::vector<int> & index,
		       int const first, 
		       int const last,
		       std::vector<int> const & blockSizes,
		       int bSizeIndex) {

    sortCoord(xpos, ypos, zpos, 
	      index.begin() + first, 
	      index.begin() + last);

		int sizeBox1 = index.size()/7;
		for(int i = 0; i < 7; ++i)
    permuteAndRecurse(xpos, ypos, zpos, 
		      index, first+sizeBox1*i, first + sizeBox1*(i+1),
		      blockSizes, bSizeIndex);   
}


template<typename Treal>
void getPermutation(std::vector<Treal> const & xpos, 
		    std::vector<Treal> const & ypos, 
		    std::vector<Treal> const & zpos,
		    std::vector<int> & permutation,
		    std::vector<int> const & blockSizes) {
  permutation.resize(xpos.size());
  for (unsigned int ind = 0; ind < permutation.size(); ++ind) {
    permutation[ind] = (int)ind;
  }
  permuteAndRecurse(xpos, ypos, zpos, 
		    permutation, 
		    0, permutation.size(), 
		    blockSizes, 0);
}


/* ** End of permutation help functions*/

void getMatrixPermutation(const BasisInfoStruct& basisInfo,
			  int sparse_block_size,
			  int factor1, 
			  int factor2, 
			  int factor3,
			  std::vector<int> & permutation,
			  std::vector<int> & inversePermutation) {
  
  int n = basisInfo.noOfBasisFuncs;
  std::vector<ergo_real> xlong(n);
  std::vector<ergo_real> ylong(n);
  std::vector<ergo_real> zlong(n);
  for(int i = 0; i < n; i++) {
    xlong[i] = basisInfo.basisFuncList[i].centerCoords[0];
    ylong[i] = basisInfo.basisFuncList[i].centerCoords[1];
    zlong[i] = basisInfo.basisFuncList[i].centerCoords[2];
  }

  int bSizeVecTmp[5];
  bSizeVecTmp[4] = 1;
  bSizeVecTmp[3] = sparse_block_size;
  bSizeVecTmp[2] = bSizeVecTmp[3] * factor1;
  bSizeVecTmp[1] = bSizeVecTmp[2] * factor2;
  bSizeVecTmp[0] = bSizeVecTmp[1] * factor3;
  std::vector<int> blockSizeVector(bSizeVecTmp, bSizeVecTmp + 5);
  do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "creating matrix permutation using blockSizeVector:");
  for(int i = 0; i < 5; i++)
    do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "blockSizeVector[%i] = %12i", i, blockSizeVector[i]);
  getPermutation(xlong, ylong, zlong, 
		 inversePermutation,
		 blockSizeVector);    
  permutation.resize(inversePermutation.size());
  for (unsigned int ind = 0; ind < inversePermutation.size(); ++ind)
    permutation[inversePermutation[ind]] = ind;
}

void getMatrixPermutation(const BasisInfoStruct& basisInfo,
			  int sparse_block_size,
			  int factor1, 
			  int factor2, 
			  int factor3,
			  std::vector<int> & permutation) {
  std::vector<int> inversePermutationDummy;
  getMatrixPermutation(basisInfo,
		       sparse_block_size,
		       factor1, 
		       factor2, 
		       factor3,
		       permutation,
		       inversePermutationDummy);
}


void getMatrixPermutationOnlyFactor2(const std::vector<ergo_real> & xcoords,
				     const std::vector<ergo_real> & ycoords,
				     const std::vector<ergo_real> & zcoords,
				     int sparse_block_size_lowest,
				     int first_factor_in, // this factor may be different from 2, all other factors are always 2.
				     std::vector<int> & permutation,
				     std::vector<int> & inversePermutation) {
  int first_factor = first_factor_in;
  // If the given first_factor parameter is 1, then we proceed as if first_factor=2 anyway. This anyway gives us the permutation we want in that case.
  if(first_factor == 1)
    first_factor = 2;
  // Check how many levels are needed.
  int n = xcoords.size();
  int nLevels = 2;
  int nTmp = n / sparse_block_size_lowest;
  bool first = true;
  while(nTmp > 1) {
    int currFactor = 2;
    if(first) {
      currFactor = first_factor;
      first = false;
    }
    nTmp /= currFactor;
    nLevels++;
  }
  std::vector<int> bSizeVecTmp(nLevels);
  bSizeVecTmp[nLevels-1] = 1;
  bSizeVecTmp[nLevels-2] = sparse_block_size_lowest;
  if(nLevels >= 3)
    bSizeVecTmp[nLevels-3] = sparse_block_size_lowest * first_factor;
  for(int i = nLevels-4; i >= 0; i--)
    bSizeVecTmp[i] = bSizeVecTmp[i+1] * 2;
  std::vector<int> blockSizeVector(&bSizeVecTmp[0], &bSizeVecTmp[nLevels]);
  do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "creating matrix permutation using blockSizeVector (%2d levels):", nLevels);
  for(int i = 0; i < nLevels; i++)
    do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "blockSizeVector[%i] = %12i", i, blockSizeVector[i]);
  getPermutation(xcoords, ycoords, zcoords,
		 inversePermutation,
		 blockSizeVector);
  permutation.resize(inversePermutation.size());
  for (unsigned int ind = 0; ind < inversePermutation.size(); ++ind)
    permutation[inversePermutation[ind]] = ind;
}


void getMatrixPermutationOnlyFactor2(const BasisInfoStruct& basisInfo,
				     int sparse_block_size_lowest,
				     int first_factor, // this factor may be different from 2, all other factors are always 2.
				     std::vector<int> & permutation,
				     std::vector<int> & inversePermutation) {
  int n = basisInfo.noOfBasisFuncs;
  std::vector<ergo_real> xcoords(n);
  std::vector<ergo_real> ycoords(n);
  std::vector<ergo_real> zcoords(n);
  for(int i = 0; i < n; i++) {
    xcoords[i] = basisInfo.basisFuncList[i].centerCoords[0];
    ycoords[i] = basisInfo.basisFuncList[i].centerCoords[1];
    zcoords[i] = basisInfo.basisFuncList[i].centerCoords[2];
  }
  getMatrixPermutationOnlyFactor2(xcoords,
				  ycoords,
				  zcoords,
				  sparse_block_size_lowest,
				  first_factor,
				  permutation,
				  inversePermutation);
}


void 
fill_matrix_with_random_numbers(int n, symmMatrix & M)
{
#if 1
  M.random();
#else
  ergo_real* full = new ergo_real[n*n];
  for(int i = 0; i < n; i++)
    for(int j = i; j < n; j++)
      {
	ergo_real a = rand() / (ergo_real)RAND_MAX;
	full[i*n+j] = a;
	full[j*n+i] = a;
      }
  M.assign_from_full(full, n, n);
  delete []full;
#endif
}


static ergo_real rand_minus1_to_1()
{
  ergo_real a = rand() / (ergo_real)RAND_MAX;
  // now a is between 0 and 1
  a *= 2;
  // now a is between 0 and 2
  a -= 1;
  // now a is between -1 and 1
  return a;
}

void 
add_random_diag_perturbation(int n, 
			     symmMatrix & M, 
			     ergo_real eps)
{
  std::vector<ergo_real> randomVector(n);
  std::vector<int> rowIndVector(n);
  std::vector<int> colIndVector(n);
  for(int i = 0; i < n; i++)
    {
      rowIndVector[i] = i;
      colIndVector[i] = i;
      randomVector[i] = eps * rand_minus1_to_1();
    }
  /* No permutation needed since this is a diagonal random element add. */
  M.add_values(rowIndVector, colIndVector, randomVector); 
}


/** This function is supposed to check if a matrix contains any strange numbers such as "inf" or "nan". 
 *  The function returns true is any strange numbers are found, and false if the matrix seems ok. */
bool
check_if_matrix_contains_strange_elements(const symmMatrix & M,
                                          std::vector<int> const & inversePermutationHML)
{
  std::vector<int> rowind;
  std::vector<int> colind;
  std::vector<ergo_real> values;
  M.get_all_values(rowind,
                   colind,
                   values,
                   inversePermutationHML,
                   inversePermutationHML);
  int nvalues = values.size();
  for(int i = 0; i < nvalues; i++) {
    ergo_real x = values[i];
    bool ok1 = false;
    if(x > -template_blas_get_num_limit_max<ergo_real>())
      ok1 = true;
    bool ok2 = false;
    if(x < template_blas_get_num_limit_max<ergo_real>())
      ok2 = true;
    if( ! (ok1 && ok2) )
      return true;
  }
  return false;
}


void 
output_matrix(int n, const ergo_real* matrix, const char* matrixName)
{
  int nn = n;
  printf("output_matrix for matrix '%s', n = %i:\n", matrixName, n);
  if(n > 15) {
    printf("output_matrix showing truncated matrix\n");
    nn = 15;
  }
  for(int i = 0; i < nn; i++)
    {
      for(int j = 0; j < nn; j++)
	printf("%9.4f ", (double)matrix[i*n+j]);
      printf("\n");
    }
}