File: matrix_utilities.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (213 lines) | stat: -rw-r--r-- 7,882 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file matrix_utilities.h

    @brief Utilities related to the hierarchical matrix library (HML),
    including functions for setting up permutations of basis functions
    to increase data locality in the hierarchical matrix data
    structure.
*/

#ifndef MATRIX_UTILITIES_HEADER
#define MATRIX_UTILITIES_HEADER

#include "matrix_typedefs.h"
#include "basisinfo.h"

#if 0
/** prepare_matrix_permutation creates a perm object as required by
    further matrix manipulation routines. */
Perm* prepare_matrix_permutation(const BasisInfoStruct& basisInfo,
				 int sparse_block_size,
				 int factor1, int factor2, int factor3);
#else

mat::SizesAndBlocks prepareMatrixSizesAndBlocks(int n_basis_functions,
						int sparse_block_size,
						int factor1, 
						int factor2, 
						int factor3);

void getMatrixPermutation(const BasisInfoStruct& basisInfo,
			  int sparse_block_size,
			  int factor1, 
			  int factor2, 
			  int factor3,
			  std::vector<int> & permutation);
void getMatrixPermutation(const BasisInfoStruct& basisInfo,
			  int sparse_block_size,
			  int factor1, 
			  int factor2, 
			  int factor3,
			  std::vector<int> & permutation,
			  std::vector<int> & inversePermutation);
void getMatrixPermutationOnlyFactor2(const std::vector<ergo_real> & xcoords,
				     const std::vector<ergo_real> & ycoords,
				     const std::vector<ergo_real> & zcoords,
				     int sparse_block_size_lowest,
				     int first_factor, // this factor may be different from 2, all other factors are always 2.
				     std::vector<int> & permutation,
				     std::vector<int> & inversePermutation);
void getMatrixPermutationOnlyFactor2(const BasisInfoStruct& basisInfo,
				     int sparse_block_size_lowest,
				     int first_factor, // this factor may be different from 2, all other factors are always 2.
				     std::vector<int> & permutation,
				     std::vector<int> & inversePermutation);

#endif
void fill_matrix_with_random_numbers(int n, symmMatrix & M);

void add_random_diag_perturbation(int n, 
				  symmMatrix & M, 
				  ergo_real eps);

bool check_if_matrix_contains_strange_elements(const symmMatrix & M,
                                               std::vector<int> const & inversePermutationHML);

void output_matrix(int n, const ergo_real* matrix, const char* matrixName);

template<class Tmatrix>
ergo_real compute_maxabs_sparse(const Tmatrix & M)
{
  return M.maxAbsValue();

}

template<typename RandomAccessIterator>
struct matrix_utilities_CompareClass {
  RandomAccessIterator first;
  explicit matrix_utilities_CompareClass(RandomAccessIterator firstel)
    : first(firstel){}
  bool operator() (int i,int j) { return (*(first + i) < *(first + j));}
};

template<typename Tmatrix>
void get_all_nonzeros( Tmatrix const & A, 
		       std::vector<int> const & inversePermutation,
		       std::vector<int> & rowind,
		       std::vector<int> & colind,
		       std::vector<ergo_real> & values) {
  rowind.resize(0);
  colind.resize(0);
  values.resize(0);
  size_t nvalues = 0;
  size_t nvalues_tmp = A.nvalues();
  std::vector<int>       rowind_tmp; rowind_tmp.reserve(nvalues_tmp);
  std::vector<int>       colind_tmp; colind_tmp.reserve(nvalues_tmp);
  std::vector<ergo_real> values_tmp; values_tmp.reserve(nvalues_tmp);
  A.get_all_values(rowind_tmp,
		   colind_tmp,
		   values_tmp,
		   inversePermutation,
		   inversePermutation);
  // Count the number of nonzeros
  for(size_t i = 0; i < nvalues_tmp; i++) {
    nvalues += ( values_tmp[i] != 0 );
  }
  rowind.reserve(nvalues);
  colind.reserve(nvalues);
  values.reserve(nvalues);
  // Extract all nonzeros
  for(size_t i = 0; i < nvalues_tmp; i++) {
    if ( values_tmp[i] != 0 ) {
      rowind.push_back( rowind_tmp[i] );
      colind.push_back( colind_tmp[i] );
      values.push_back( values_tmp[i] );	
    }
  }
} // end get_all_nonzeros(...)


template<typename Tmatrix>
void write_matrix_in_matrix_market_format( Tmatrix const & A, 
					   std::vector<int> const & inversePermutation,
					   std::string filename,
					   std::string identifier,
					   std::string method_and_basis)
{

  // Get all matrix elements
  size_t nvalues = 0;
  std::vector<int>       rowind;
  std::vector<int>       colind;
  std::vector<ergo_real> values;
  get_all_nonzeros( A, inversePermutation, rowind, colind, values);
  nvalues = values.size();
  // Now we have all matrix elements
  // Open file stream
  std::string mtx_filename = filename + ".mtx";
  std::ofstream os(mtx_filename.c_str());

  time_t rawtime;
  struct tm * timeinfo;
  time ( &rawtime );
  timeinfo = localtime ( &rawtime );

  std::string matrix_market_matrix_type = "general";
  bool matrixIsSymmetric = (A.obj_type_id() == "MatrixSymmetric");
  if (matrixIsSymmetric)
    matrix_market_matrix_type = "symmetric";
  os << "%%MatrixMarket matrix coordinate real " << matrix_market_matrix_type << std::endl
     << "%===============================================================================" << std::endl
     << "% Generated by the Ergo quantum chemistry program version " << VERSION << " (www.ergoscf.org)" << std::endl
     << "% Date      : " << asctime (timeinfo) // newline added by asctime
     << "% ID-string : " << identifier << std::endl
     << "% Method    : " << method_and_basis << std::endl
     << "%" << std::endl
     << "% MatrixMarket file format:" << std::endl
     << "% +-----------------" << std::endl
     << "% | % comments" << std::endl
     << "% | nrows ncols nentries" << std::endl
     << "% | i_1        j_1        A(i_1,j_1)" << std::endl
     << "% | i_2        j_2        A(i_2,j_2)" << std::endl
     << "% | ..." << std::endl
     << "% | i_nentries j_nentries A(i_nentries,j_nentries) " << std::endl
     << "% +----------------" << std::endl
     << "% Note that indices are 1-based, i.e. A(1,1) is the first element." << std::endl
     << "%" << std::endl
     << "%===============================================================================" << std::endl;
  os << A.get_nrows() << "  " << A.get_ncols() << "  " << nvalues << std::endl;
  if (matrixIsSymmetric)
    for(size_t i = 0; i < nvalues; i++) {
      // Output lower triangle
      if ( rowind[i] < colind[i] )
	os << colind[i]+1 << "  " << rowind[i]+1 << "  " << std::setprecision(10) << (double)values[i] << std::endl;
      else
	os << rowind[i]+1 << "  " << colind[i]+1 << "  " << std::setprecision(10) << (double)values[i] << std::endl;
    }      
  else
    for(size_t i = 0; i < nvalues; i++) {
      os << rowind[i]+1 << "  " << colind[i]+1 << "  " << std::setprecision(10) << (double)values[i] << std::endl;
    }  
  os.close();
} // end write_matrix_in_matrix_market_format(...)


#endif