1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file simple_lanczos.h
@brief Simple implementation of the Lanczos method.
@author: Elias Rudberg <em>responsible</em>
*/
#ifndef SIMPLE_LANCZOS_HEADER
#define SIMPLE_LANCZOS_HEADER
#include "realtype.h"
#include <vector>
#include <cstdio>
namespace simple_lanczos {
ergo_real simple_lanczos_get_vector_norm(int n, const ergo_real* v);
void simple_lanczos_normalize_vector(int n, ergo_real* v);
void simple_lanczos_get_eigs(int n, ergo_real* M,
ergo_real & currEig_lo, ergo_real* bestVector_lo,
ergo_real & currEig_hi, ergo_real* bestVector_hi,
ergo_real* eigValListResult);
template<typename Tmatvecmul>
void do_lanczos_method(int n,
const ergo_real* guessVector,
ergo_real & resultEig_lo,
ergo_real* resultVec_lo,
ergo_real & resultEig_hi,
ergo_real* resultVec_hi,
const Tmatvecmul & matvecmul,
int maxIterations_in,
ergo_real shift,
ergo_real extraEnergy) {
if(n == 1) {
// Special case for n=1, in this case we need only one "matrix-vector" (really scalar) multiplication to get all info we need.
ergo_real tmpVec1[1];
tmpVec1[0] = 1;
ergo_real tmpVec2[1];
tmpVec2[0] = 0;
matvecmul.do_mat_vec_mul(n, tmpVec1, tmpVec2);
ergo_real eigenValue = tmpVec2[0];
resultEig_lo = eigenValue;
resultEig_hi = eigenValue;
resultVec_lo[0] = 1;
resultVec_hi[0] = 1;
}
typedef ergo_real* ergo_real_ptr;
int maxIterations = maxIterations_in;
if(maxIterations > n)
maxIterations = n;
ergo_real** q = new ergo_real_ptr[n+1];
q[0] = new ergo_real[n];
for(int i = 0; i < n; i++)
q[0][i] = 0;
q[1] = new ergo_real[n];
for(int i = 0; i < n; i++)
q[1][i] = guessVector[i];
simple_lanczos_normalize_vector(n, q[1]);
std::vector<ergo_real> z(n);
std::vector<ergo_real> alpha(n+1);
std::vector<ergo_real> beta(n+1);
beta[0] = 0;
std::vector<ergo_real> bestVector_lo(maxIterations+1);
std::vector<ergo_real> bestVector_hi(maxIterations+1);
ergo_real currEig_lo = 0;
ergo_real currEig_hi = 0;
ergo_real curr_E_lo = 0;
ergo_real curr_E_hi = 0;
for(int j = 1; j <= maxIterations; j++) {
// Do matrix-vector multiplication
matvecmul.do_mat_vec_mul(n, q[j], &z[0]);
// OK, matrix-vector multiplication done
alpha[j] = 0;
for(int i = 0; i < n; i++)
alpha[j] += q[j][i] * z[i];
for(int i = 0; i < n; i++)
z[i] = z[i] - alpha[j] * q[j][i] - beta[j-1] * q[j-1][i];
beta[j] = simple_lanczos_get_vector_norm(n, &z[0]);
ergo_real* T = new ergo_real[j*j];
for(int i = 0; i < j*j; i++)
T[i] = 0;
for(int i = 0; i < j; i++)
T[i*j+i] = alpha[i+1];
for(int i = 0; i < j-1; i++) {
T[i*j+(i+1)] = beta[i+1];
T[(i+1)*j+i] = beta[i+1];
}
simple_lanczos_get_eigs(j, T, currEig_lo, &bestVector_lo[0], currEig_hi, &bestVector_hi[0], NULL);
// Set resultVec_lo
for(int k = 0; k < n; k++) {
ergo_real sum = 0;
for(int i = 1; i <= j; i++)
sum += bestVector_lo[i-1] * q[i][k];
resultVec_lo[k] = sum;
}
// Set resultVec_hi
for(int k = 0; k < n; k++) {
ergo_real sum = 0;
for(int i = 1; i <= j; i++)
sum += bestVector_hi[i-1] * q[i][k];
resultVec_hi[k] = sum;
}
curr_E_lo = currEig_lo + extraEnergy + shift;
curr_E_hi = currEig_hi + extraEnergy + shift;
if(beta[j] < 1e-11 && j > 1)
break;
if(j == maxIterations)
break;
q[j+1] = new ergo_real[n];
for(int i = 0; i < n; i++)
q[j+1][i] = z[i] / beta[j];
} // end for j
resultEig_lo = curr_E_lo;
resultEig_hi = curr_E_hi;
simple_lanczos_normalize_vector(n, resultVec_lo);
simple_lanczos_normalize_vector(n, resultVec_hi);
}
} // end namespace simple_lanczos
#endif
|