File: simple_lanczos.h

package info (click to toggle)
ergo 3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 17,396 kB
  • sloc: cpp: 94,740; ansic: 17,015; sh: 7,559; makefile: 1,402; yacc: 127; lex: 110; awk: 23
file content (151 lines) | stat: -rw-r--r-- 5,048 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* Ergo, version 3.8, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file simple_lanczos.h

    @brief Simple implementation of the Lanczos method.

    @author: Elias Rudberg <em>responsible</em>
*/

#ifndef SIMPLE_LANCZOS_HEADER
#define SIMPLE_LANCZOS_HEADER

#include "realtype.h"
#include <vector>
#include <cstdio>

namespace simple_lanczos {

  ergo_real simple_lanczos_get_vector_norm(int n, const ergo_real* v);
  void simple_lanczos_normalize_vector(int n, ergo_real* v);
  void simple_lanczos_get_eigs(int n, ergo_real* M, 
			       ergo_real & currEig_lo, ergo_real* bestVector_lo, 
			       ergo_real & currEig_hi, ergo_real* bestVector_hi, 
			       ergo_real* eigValListResult);

  template<typename Tmatvecmul>
    void do_lanczos_method(int n,
			   const ergo_real* guessVector,
			   ergo_real & resultEig_lo,
			   ergo_real* resultVec_lo,
			   ergo_real & resultEig_hi,
			   ergo_real* resultVec_hi,
			   const Tmatvecmul & matvecmul,
			   int maxIterations_in,
			   ergo_real shift,
			   ergo_real extraEnergy) {
    if(n == 1) {
      // Special case for n=1, in this case we need only one "matrix-vector" (really scalar) multiplication to get all info we need.
      ergo_real tmpVec1[1];
      tmpVec1[0] = 1;
      ergo_real tmpVec2[1];
      tmpVec2[0] = 0;
      matvecmul.do_mat_vec_mul(n, tmpVec1, tmpVec2);
      ergo_real eigenValue = tmpVec2[0];
      resultEig_lo = eigenValue;
      resultEig_hi = eigenValue;
      resultVec_lo[0] = 1;
      resultVec_hi[0] = 1;
    }
    typedef ergo_real* ergo_real_ptr;
    int maxIterations = maxIterations_in;
    if(maxIterations > n)
      maxIterations = n;
    ergo_real** q = new ergo_real_ptr[n+1];
    q[0] = new ergo_real[n];
    for(int i = 0; i < n; i++)
      q[0][i] = 0;
    q[1] = new ergo_real[n];
    for(int i = 0; i < n; i++)
      q[1][i] = guessVector[i];
    simple_lanczos_normalize_vector(n, q[1]);
    std::vector<ergo_real> z(n);
    std::vector<ergo_real> alpha(n+1);
    std::vector<ergo_real> beta(n+1);
    beta[0] = 0;
    std::vector<ergo_real> bestVector_lo(maxIterations+1);
    std::vector<ergo_real> bestVector_hi(maxIterations+1);
    ergo_real currEig_lo = 0;
    ergo_real currEig_hi = 0;
    ergo_real curr_E_lo = 0;
    ergo_real curr_E_hi = 0;
    for(int j = 1; j <= maxIterations; j++) {
      // Do matrix-vector multiplication
      matvecmul.do_mat_vec_mul(n, q[j], &z[0]);
      // OK, matrix-vector multiplication done
      alpha[j] = 0;
      for(int i = 0; i < n; i++)
	alpha[j] += q[j][i] * z[i];
      for(int i = 0; i < n; i++)
	z[i] = z[i] - alpha[j] * q[j][i] - beta[j-1] * q[j-1][i];
      beta[j] = simple_lanczos_get_vector_norm(n, &z[0]);
      ergo_real* T = new ergo_real[j*j];
      for(int i = 0; i < j*j; i++)
	T[i] = 0;
      for(int i = 0; i < j; i++)
	T[i*j+i] = alpha[i+1];
      for(int i = 0; i < j-1; i++) {
	T[i*j+(i+1)] = beta[i+1];
	T[(i+1)*j+i] = beta[i+1];
      }
      simple_lanczos_get_eigs(j, T, currEig_lo, &bestVector_lo[0], currEig_hi, &bestVector_hi[0], NULL);
      // Set resultVec_lo
      for(int k = 0; k < n; k++) {
	ergo_real sum = 0;
	for(int i = 1; i <= j; i++)
	  sum += bestVector_lo[i-1] * q[i][k];
	resultVec_lo[k] = sum;
      }
      // Set resultVec_hi
      for(int k = 0; k < n; k++) {
	ergo_real sum = 0;
	for(int i = 1; i <= j; i++)
	  sum += bestVector_hi[i-1] * q[i][k];
	resultVec_hi[k] = sum;
      }
      curr_E_lo = currEig_lo + extraEnergy + shift;
      curr_E_hi = currEig_hi + extraEnergy + shift;
      if(beta[j] < 1e-11 && j > 1)
	break;
      if(j == maxIterations)
	break;
      q[j+1] = new ergo_real[n];
      for(int i = 0; i < n; i++)
	q[j+1][i] = z[i] / beta[j];
    } // end for j
    resultEig_lo = curr_E_lo;
    resultEig_hi = curr_E_hi;
    simple_lanczos_normalize_vector(n, resultVec_lo);
    simple_lanczos_normalize_vector(n, resultVec_hi);
  }

} // end namespace simple_lanczos

#endif