1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
/* Ergo, version 3.8, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file matrix_algebra.cc
@brief A few matrix algebra routines for dense matrices.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdlib.h>
#include "matrix_algebra.h"
#include "memorymanag.h"
#include "output.h"
#include "../matrix/mat_gblas.h"
#define USE_BLAS_MM
#if 0
#ifdef USE_BLAS_MM
#ifdef __cplusplus
extern "C"
#endif
void dgemm_(const char *ta,const char *tb,
const int *n, const int *k, const int *l,
const double *alpha,const double *A,const int *lda,
const double *B, const int *ldb,
const double *beta,const double *C, const int *ldc);
#endif
#endif
/*
Standard matrix multiplication.
*/
void
multiply_matrices_general(int An1, int An2, int Bn1, int Bn2, const ergo_real* A, const ergo_real* B, ergo_real* AB)
{
int i, j;
if(An2 != Bn1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_LOWLEVEL,
"error in multiply_matrices_general: (An2 != Bn1)");
exit(0);
}
#ifdef USE_BLAS_MM
if(An1 == 0 || An2 == 0 || Bn1 == 0 || Bn2 == 0)
return;
/* call gemm */
ergo_real alpha = 1;
ergo_real beta = 0;
ergo_real* ABtemp = (ergo_real*)ergo_malloc(An1*Bn2*sizeof(ergo_real));
memset(ABtemp, 0, An1*Bn2*sizeof(ergo_real));
mat::gemm("T", "T", &An1, &Bn2, &An2, &alpha,
A, &An2,
B, &Bn2,
&beta,
ABtemp, &An1);
/* do transpose of result */
for(i = 0; i < An1; i++)
for(j = 0; j < Bn2; j++)
{
AB[i*Bn2+j] = ABtemp[j*An1+i];
}
ergo_free(ABtemp);
#else
for(i = 0; i < An1; i++)
for(j = 0; j < Bn2; j++)
{
ergo_real sum = 0;
for(int k = 0; k < An2; k++)
sum += A[i*An2+k] * B[k*Bn2+j];
AB[i*Bn2+j] = sum;
}
#endif
}
/*
Matrix multiplication when the first matrix is transposed.
*/
void
multiply_matrices_general_T_1(int An1, int An2, int Bn1, int Bn2, const ergo_real* A, const ergo_real* B, ergo_real* AB)
{
int i, j;
if(An1 != Bn1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_LOWLEVEL, "error in multiply_matrices_general_T_1: (An1 != Bn1)");
exit(0);
}
ergo_real* At = (ergo_real*)ergo_malloc(An1*An2*sizeof(ergo_real));
for(i = 0; i < An1; i++)
for(j = 0; j < An2; j++)
At[j*An1+i] = A[i*An2+j];
multiply_matrices_general(An2, An1, Bn1, Bn2, At, B, AB);
ergo_free(At);
}
|