1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file basisinfo.cc
\brief Code for setting up basis functions starting from shells.
@author: Elias Rudberg <em>responsible</em>.
*/
/* -*-mode:c; c-style:k&r; indent-tabs-mode: nil -*- */
/* Written by Elias Rudberg, KTH, Stockholm */
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include <string.h>
#include "basisinfo.h"
#include "basisset.h"
#include "memorymanag.h"
#include "pi.h"
#include "output.h"
#include "utilities.h"
#include "boysfunction.h"
#include "integral_info.h"
#include "integrals_general.h"
#include "machine_epsilon.h"
int
output_basisinfo(const BasisInfoStruct & basisInfo)
{
static char shell_names[] = "SPDFGHIJKLMNOP";
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "=============== start of output_basisinfo ===========================");
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "output_basisinfo, basisInfo->noOfShells = %i",
basisInfo.noOfShells);
char line[180];
for(int i = 0; i < basisInfo.noOfShells; i++) {
if(basisInfo.shellList[i].shellType >=0 &&
basisInfo.shellList[i].shellType<(signed)sizeof(shell_names))
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "%c-shell at (x y z) = ( %8.4f %8.4f %8.4f )"
" %d primitive(s)",
shell_names[basisInfo.shellList[i].shellType],
(double)basisInfo.shellList[i].centerCoords[0],
(double)basisInfo.shellList[i].centerCoords[1],
(double)basisInfo.shellList[i].centerCoords[2],
basisInfo.shellList[i].noOfContr);
else
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "shell with L=%d at (x y z) = ( %8.4f %8.4f %8.4f )"
" %d primitive(s)",
basisInfo.shellList[i].shellType,
(double)basisInfo.shellList[i].centerCoords[0],
(double)basisInfo.shellList[i].centerCoords[1],
(double)basisInfo.shellList[i].centerCoords[2],
basisInfo.shellList[i].noOfContr);
int pos = 0;
for(int j = 0; j < basisInfo.shellList[i].noOfContr; j++) {
sprintf(line+pos, "%10.6f e^%9.6f,",
(double)basisInfo.shellList[i].coeffList[j],
(double)basisInfo.shellList[i].exponentList[j]);
pos = (int)strlen(line);
if(pos>60) { do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, line); pos = 0; }
}
if(pos>0) do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, line);
}
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "================ end of output_basisinfo ===========================");
return 0;
}
static void
define_basis_func_poly(BasisFuncStruct* basisFunc, int polyIndex, const IntegralInfo& b)
{
if(polyIndex >= b.no_of_basis_func_polys)
throw "Error in define_basis_func_poly: (polyIndex >= b.no_of_basis_func_polys).";
const basis_func_poly_struct* poly = &b.basis_func_poly_list[polyIndex];
basisFunc->noOfTermsInPolynomial = poly->noOfTerms;
for(int i = 0; i < poly->noOfTerms; i++)
memcpy(&basisFunc->poly[i], &poly->termList[i], sizeof(basis_func_term_struct));
}
static void
define_basis_func_poly_special_6dfuncs(BasisFuncStruct* basisFunc, const IntegralInfo & b)
{
// SPECIAL CASE: USE 6 d-type functions instead of 5.
// Use the following 6 functions: x^2 y^2 z^2 xy xz yz
basisFunc->noOfTermsInPolynomial = 1;
int i0 = 0, i1 = 0, i2 = 0;
ergo_real coeff = 0;
const ergo_real coeff_a = 1;
const ergo_real coeff_b = template_blas_sqrt((ergo_real)3);
switch(basisFunc->functionNumber) {
case 0: i0 = 2; i1 = 0; i2 = 0; coeff = coeff_a; break; // x^2
case 1: i0 = 0; i1 = 2; i2 = 0; coeff = coeff_a; break; // y^2
case 2: i0 = 0; i1 = 0; i2 = 2; coeff = coeff_a; break; // y^2
case 3: i0 = 1; i1 = 1; i2 = 0; coeff = coeff_b; break; // xy
case 4: i0 = 1; i1 = 0; i2 = 1; coeff = coeff_b; break; // xz
case 5: i0 = 0; i1 = 1; i2 = 1; coeff = coeff_b; break; // yz
default: throw "Error: default reached when defining d-type basis function.";
}
basisFunc->poly[0].coeff = coeff;
basisFunc->poly[0].monomialInts[0] = i0;
basisFunc->poly[0].monomialInts[1] = i1;
basisFunc->poly[0].monomialInts[2] = i2;
basisFunc->poly[0].monomialID = b.monomial_info.monomial_index_list[i0][i1][i2];
}
static int
get_simple_primitives(BasisFuncStruct* currBasisFunc,
DistributionSpecStruct* list,
int nInput,
int nListMax,
const IntegralInfo& b,
int use_6_d_funcs)
{
/* first setup polynomial */
int spd = currBasisFunc->shellType;
// Note: special case for use_6_d_funcs comes in here.
if(spd == 2 && use_6_d_funcs == 1) {
// SPECIAL CASE: USE 6 d-type functions instead of 5.
// Use the following 6 functions: x^2 y^2 z^2 xy xz yz
define_basis_func_poly_special_6dfuncs(currBasisFunc, b);
}
else {
int baseIndex = spd*spd;
define_basis_func_poly(currBasisFunc, baseIndex + currBasisFunc->functionNumber, b);
}
int n = nInput;
int contr = currBasisFunc->noOfContr;
for(int kk = 0; kk < contr; kk++) {
for(int ii = 0; ii < currBasisFunc->noOfTermsInPolynomial; ii++) {
list[n].coeff = currBasisFunc->coeffList[kk] * currBasisFunc->poly[ii].coeff;
for(int coordNo = 0; coordNo < 3; coordNo++)
list[n].monomialInts[coordNo] = currBasisFunc->poly[ii].monomialInts[coordNo];
list[n].exponent = currBasisFunc->exponentList[kk];
for(int coordNo = 0; coordNo < 3; coordNo++)
list[n].centerCoords[coordNo] = currBasisFunc->centerCoords[coordNo];
n++;
if(n >= nListMax) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_simple_primitives: "
"(n >= nListMax)");
return -1;
}
} /* END FOR ii */
} /* END FOR kk */
return n - nInput;
} /* END get_simple_primitives */
static int
sort_shells(ShellSpecStruct* list, ShellSpecStruct* listTemp, int n)
{
int n1, n2, i1, i2;
if(n == 1)
return 0;
n1 = n / 2;
n2 = n - n1;
/* sort parts */
if(sort_shells(&list[0], listTemp, n1) != 0)
return -1;
if(sort_shells(&list[n1], listTemp, n2) != 0)
return -1;
/* merge to temp list */
i1 = 0;
i2 = 0;
while(i1 < n1 && i2 < n2)
{
if(list[i1].shell_ID < list[n1+i2].shell_ID)
{
memcpy(&listTemp[i1+i2], &list[i1], sizeof(ShellSpecStruct));
i1++;
}
else
{
memcpy(&listTemp[i1+i2], &list[n1+i2], sizeof(ShellSpecStruct));
i2++;
}
} /* END WHILE */
while(i1 < n1)
{
memcpy(&listTemp[i1+i2], &list[i1], sizeof(ShellSpecStruct));
i1++;
}
while(i2 < n2)
{
memcpy(&listTemp[i1+i2], &list[n1+i2], sizeof(ShellSpecStruct));
i2++;
}
/* copy back to result list */
memcpy(list, listTemp, n * sizeof(ShellSpecStruct));
return 0;
}
/* FIXME: why was there an anonymous name space here, enclosing the
SquareFuncIntegrator stuff? */
namespace {
} /* end of anonymous name space */
ergo_real
SquareFuncIntegrator::computeIntegralOfSquareOfBasisFunc
(const IntegralInfo& integralInfo, BasisFuncStruct* basisFunc, int use_6_d_funcs)
{
int noOfPrimitives = get_simple_primitives(basisFunc,
list,
0,
MAX_NO_OF_PRIMS,
integralInfo,
use_6_d_funcs);
if(noOfPrimitives == 0)
throw "error in get_simple_primitives in computeIntegralOfSquareOfBasisFunc (noOfPrimitives == 0)";
if(noOfPrimitives < 0)
throw "error in get_simple_primitives in computeIntegralOfSquareOfBasisFunc (noOfPrimitives < 0)";
// Compute square of basis function
int productCount = 0;
for(int ii = 0; ii < noOfPrimitives; ii++) {
const DistributionSpecStruct& primA = list[ii];
for(int jj = 0; jj < noOfPrimitives; jj++) {
const DistributionSpecStruct& primB = list[jj];
int nNewPrims = get_product_simple_prims(primA,
primB,
&productlist[productCount],
MAX_NO_OF_PRIMS - productCount,
0);
if(nNewPrims < 0)
throw "Error in computeIntegralOfSquareOfBasisFunc, in get_product_simple_prims.";
productCount += nNewPrims;
} // END FOR jj
} // END FOR ii
ergo_real sum = 0;
for(int ii = 0; ii < productCount; ii++)
sum += compute_integral_of_simple_prim(productlist[ii]);
if(sum < 0)
throw "Error in computeIntegralOfSquareOfBasisFunc, norm factor sum < 0.";
return sum;
}
ergo_real
SquareFuncIntegrator::getShellFactor(const IntegralInfo& integralInfo,
ergo_real exponent,
int shellType,
int use_6_d_funcs)
{
BasisFuncStruct basisFunc;
basisFunc.noOfContr = 1;
basisFunc.coeffList[0] = 1;
basisFunc.exponentList[0] = exponent;
for(int kk = 0; kk < 3; kk++)
basisFunc.centerCoords[kk] = 0;
basisFunc.shellType = shellType;
basisFunc.functionNumber = 0;
// Compute integral of this basis function squared.
ergo_real integralValue = computeIntegralOfSquareOfBasisFunc(integralInfo, &basisFunc, use_6_d_funcs);
ergo_real shellFactor = (ergo_real)1.0 / template_blas_sqrt(integralValue);
return shellFactor;
}
static int
find_range_index(int atomIndex, int noOfRanges, const basis_set_range_struct* rangeList) {
for(int i = 0; i < noOfRanges; i++) {
if(atomIndex >= rangeList[i].startAtomIndex && atomIndex < rangeList[i].startAtomIndex + rangeList[i].count)
return i;
}
// Return -1 to indicate range not found.
return -1;
}
static const basisset_info*
select_basis_set(int atomIndex,
int noOfRanges,
const basis_set_range_struct* rangeList,
const basisset_info* basissetDefault)
{
int rangeIndex = find_range_index(atomIndex, noOfRanges, rangeList);
if(rangeIndex < 0)
return basissetDefault;
else
return rangeList[rangeIndex].basisset;
}
/** Returns number of shells needed to describe the electronic density
for given molecule and basis set.
@param atomList list of atoms
@param noOfAtoms the length of atomList
@param basissetDefault the basis set to be used for all atoms but
those specified by rangeList.
@param noOfRanges the length of rangeList.
@param rangeList A list of atoms that should get some other,
specified basis set.
@return the number of basis set shells.
*/
static int
setup_shells_multi_basis_getcount(const Atom* atomList,
int noOfAtoms,
const basisset_info* basissetDefault,
int noOfRanges,
const basis_set_range_struct* rangeList)
{
int noOfShells = 0;
for(int i = 0; i < noOfAtoms; i++) {
int z = (int)atomList[i].charge;
const basisset_info* basissetCurrAtom = select_basis_set(i, noOfRanges, rangeList, basissetDefault);
int noOfShellsCurrAtom = basissetCurrAtom->atoms[z].noOfShells;
if(noOfShellsCurrAtom <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in setup_shells_multi_basis_getcount: element %i is not supported by selected basis set?", z);
return -1;
}
noOfShells += noOfShellsCurrAtom;
}
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "setup_shells_multi_basis_getcount, noOfShells = %i", noOfShells);
return noOfShells;
}
static int
setup_shells_multi_basis(const IntegralInfo& integralInfo,
const Atom* atomList,
int noOfAtoms,
const basisset_info* basissetDefault,
ShellSpecStruct* shell_list,
int noOfShells,
int noOfRanges,
const basis_set_range_struct* rangeList,
int use_6_d_funcs)
{
memset(shell_list, 0, noOfShells*sizeof(ShellSpecStruct));
int count = 0;
SquareFuncIntegrator sfi;
for(int i = 0; i < noOfAtoms; i++) {
int z = (int)atomList[i].charge;
const basisset_info* basissetCurrAtom = select_basis_set(i, noOfRanges, rangeList, basissetDefault);
int noOfShellsCurrAtom = basissetCurrAtom->atoms[z].noOfShells;
if(noOfShellsCurrAtom <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in setup_shells_multi_basis: element %i is not supported by selected basis set?", z);
return -1;
}
for(int j = 0; j < noOfShellsCurrAtom; j++) {
if(count >= noOfShells) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in setup_shells_multi_basis: (count >= noOfShells).");
return -1;
}
const basisset_shell_struct* basissetShell =
&basissetCurrAtom->atoms[z].shells[j];
shell_list[count].shellType = basissetShell->type;
// Note: special case for use_6_d_funcs comes in here.
if(basissetShell->type == 2 && use_6_d_funcs == 1)
shell_list[count].noOfBasisFuncs = 6;
else
shell_list[count].noOfBasisFuncs = 1 + basissetShell->type * 2;
if ( basissetShell->contrCount > MAX_NO_OF_CONTR_GAUSSIANS )
throw std::runtime_error("basissetShell->contrCount > MAX_NO_OF_CONTR_GAUSSIANS in setup_shells_multi_basis(...)");
shell_list[count].noOfContr = basissetShell->contrCount;
shell_list[count].shell_ID = basissetShell->shell_ID;
for(int k = 0; k < 3; k++)
shell_list[count].centerCoords[k] =
atomList[i].coords[k];
for(int k = 0; k < basissetShell->contrCount; k++) {
ergo_real exponent = basissetShell->exponentList[k];
shell_list[count].coeffList[k] =
basissetShell->coeffList[k] * sfi.getShellFactor(integralInfo,
exponent,
basissetShell->type, use_6_d_funcs);
shell_list[count].exponentList[k] = exponent;
}
shell_list[count].startIndexInMatrix = -1; // startIndexInMatrix will be set later.
count++;
}
}
if(count != noOfShells)
return -1;
return 0;
}
void BasisInfoStruct::addBasisfuncsForPoint(ergo_real x,
ergo_real y,
ergo_real z,
int shellType,
ergo_real exponent,
const IntegralInfo & integralInfo,
int print_raw,
int do_normalization,
int skip_sort_shells) {
// Create "dummy atom" at given pos.
Atom dummyAtom;
dummyAtom.charge = 1;
dummyAtom.coords[0] = x;
dummyAtom.coords[1] = y;
dummyAtom.coords[2] = z;
// Create "dummy basis set" defining shell types for atoms with charge 1.
basisset_info basisset;
basisset.atoms.resize(2);
for(int kk = 0; kk < 2; kk++) {
// Use one shell of each type, up to given shellType.
int nShells = shellType + 1;
if(nShells >= MAX_NO_OF_SHELLS_PER_ATOM)
throw std::runtime_error("Error in BasisInfoStruct::addBasisfuncsForPoint: (nShells >= MAX_NO_OF_SHELLS_PER_ATOM).");
basisset.atoms[kk].noOfShells = nShells;
for(int i = 0; i <= shellType; i++) {
basisset.atoms[kk].shells[i].type = i;
basisset.atoms[kk].shells[i].contrCount = 1;
basisset.atoms[kk].shells[i].shell_ID = i;
basisset.atoms[kk].shells[i].exponentList[0] = exponent;
basisset.atoms[kk].shells[i].coeffList[0] = 1;
}
}
// OK, now the "dummy basis set" is done.
addBasisfuncsForAtomList(&dummyAtom, // atomList
1, // int noOfAtoms,
basisset,
0, // noOfRanges,
NULL, // rangeList,
integralInfo,
print_raw,
do_normalization,
skip_sort_shells);
}
void BasisInfoStruct::addBasisfuncsForAtomList(const Atom* atomList,
int noOfAtoms,
const basisset_info & basissetDefault,
int noOfRanges,
const basis_set_range_struct* rangeList,
const IntegralInfo& integralInfo,
int print_raw,
int do_normalization,
int skip_sort_shells) {
int noOfShellsToAdd = setup_shells_multi_basis_getcount(atomList,
noOfAtoms,
&basissetDefault,
noOfRanges,
rangeList);
if(noOfShellsToAdd <= 0)
throw std::runtime_error("error in setup_shells_multi_basis_getcount");
int noOfShellsNew = noOfShells + noOfShellsToAdd;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS,
"BasisInfoStruct::addBasisfuncsForAtomList, noOfShellsNew = %i", noOfShellsNew);
ShellSpecStruct* shell_list_new = new ShellSpecStruct[noOfShellsNew];
if(this->noOfShells > 0)
memcpy(shell_list_new, this->shellList, this->noOfShells*sizeof(ShellSpecStruct));
// Setup new shells
if(setup_shells_multi_basis(integralInfo,
atomList,
noOfAtoms,
&basissetDefault,
&shell_list_new[noOfShells],
noOfShellsToAdd,
noOfRanges,
rangeList,
use_6_d_funcs) != 0)
throw std::runtime_error("error in setup_shells_multi_basis");
for(int i = 0; i < noOfShellsNew; i++) {
for(int kk = 0; kk < shell_list_new[i].noOfContr; kk++) {
// calculate size
shell_list_new[i].sizeList[kk] =
template_blas_fabs(template_blas_pow((ergo_real)pi/shell_list_new[i].exponentList[kk], (ergo_real)1.5) * shell_list_new[i].coeffList[kk]);
}
} /* END FOR i */
if(skip_sort_shells == 0) {
/* sort shells by shell ID */
std::vector<ShellSpecStruct> shellListTemp(noOfShellsNew);
if(sort_shells(shell_list_new, &shellListTemp[0], noOfShellsNew) != 0)
throw std::runtime_error("Error in sort_shells.");
}
if(this->shellList)
delete [] this->shellList;
this->shellList = shell_list_new;
this->noOfShells = noOfShellsNew;
if(do_normalization) {
if(this->normalizeShells(integralInfo) != 0)
throw std::runtime_error("error in normalizeShells");
}
if(this->get_basis_funcs() != 0)
throw std::runtime_error("error in get_basis_funcs");
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "get_basis_funcs returned OK, number of basis funcs: %i",
this->noOfBasisFuncs);
if(this->getSimplePrimitivesAll(integralInfo) != 0)
throw std::runtime_error("error in getSimplePrimitivesAll");
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "getSimplePrimitivesAll returned OK, n = %i",
this->noOfSimplePrimitives);
}
/** Fills in BasisInfoStruct for given molecule and
basisset_filename. It can be called several times to add basis functions
for ghost molecules.
@param molecule contains the description of the molecule geometry.
@param basisset_filename_default contains the name of the basis
set that will be used for atoms that have no basis set specified
in rangeList. A number of directories will be searched for the
given basis.
@param noOfRanges the length of rangeList.
@param rangeList is a list of basis sets associated with ranges of
atoms that should get non-default basis set.
@param integralInfo - the core structure for integral
evaluation, needed for basis set normalization.
@param print_raw - whether the basis set as read should be printed.
@param do_normalization - whether the contraction coefficients in
front of exponentials are to be normalized.
@param skip_sort_shells disable the standard sorting of shells in
the basis set with respect to atom type and exponent.
@return 0 on success, -1 on failure.
*/
int BasisInfoStruct::addBasisfuncsForMolecule(const Molecule& molecule,
const char* basisset_filename_default,
int noOfRanges,
const BasissetNameRange* rangeList,
const IntegralInfo& integralInfo,
int print_raw,
int do_normalization,
int skip_sort_shells)
{
static const char *dirv[] = {
".", "basis", "../basis",
ERGO_DATA_PREFIX "/basis",
ERGO_DATA_PREFIX,
ERGO_SPREFIX "/basis",
ERGO_SPREFIX
};
basisset_info* basissetDefault = new basisset_info();
std::vector<basis_set_range_struct> rangeListTemp(noOfRanges);
// Call memset only if nonzero size to avoid problem if -D_GLIBCXX_ASSERTIONS is used
if(noOfRanges > 0)
memset(&rangeListTemp[0], 0, noOfRanges*sizeof(basis_set_range_struct));
if(noOfRanges > 0 && rangeList == NULL)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in BasisInfoStruct::addBasisfuncsForMolecule: (noOfRanges > 0 && rangeList == NULL).");
delete basissetDefault;
return -1;
}
if(read_basisset_file(*basissetDefault, basisset_filename_default, 6, dirv,
print_raw) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in read_basisset_file for standard basis set.");
delete basissetDefault;
return -1;
}
for(int rangeIndex = 0; rangeIndex < noOfRanges; rangeIndex++) {
rangeListTemp[rangeIndex].startAtomIndex = rangeList[rangeIndex].startAtomIndex;
rangeListTemp[rangeIndex].count = rangeList[rangeIndex].count;
if(rangeList[rangeIndex].count <= 0)
rangeListTemp[rangeIndex].basisset = NULL;
else {
rangeListTemp[rangeIndex].basisset = new basisset_info();
if(read_basisset_file(*rangeListTemp[rangeIndex].basisset, rangeList[rangeIndex].basisSetFileName, 6, dirv,
print_raw) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in read_basisset_file for rangeIndex = %i", rangeIndex);
delete basissetDefault;
return -1;
}
}
}
basis_set_range_struct* rangeListPtr = NULL;
// Use &rangeListTemp[0] only if nonzero size to avoid problem if -D_GLIBCXX_ASSERTIONS is used
if(noOfRanges > 0)
rangeListPtr = &rangeListTemp[0];
addBasisfuncsForAtomList(molecule.getAtomListPtr(),
molecule.getNoOfAtoms(),
*basissetDefault,
noOfRanges,
rangeListPtr,
integralInfo,
print_raw,
do_normalization,
skip_sort_shells);
delete basissetDefault;
return 0;
}
int
BasisInfoStruct::getNoOfBasisFuncsForAtomType(const basisset_info & basisset,
const IntegralInfo & integralInfo,
int atomCharge,
int use_6_d_funcs) {
BasisInfoStruct b(use_6_d_funcs);
const int do_basis_normalization = 1;
const int skip_sort_shells = 0;
// Create dummy atom with the given charge
Atom atom;
atom.charge = atomCharge;
for(int i = 0; i < 3; i++)
atom.coords[i] = 0;
b.addBasisfuncsForAtomList(&atom, 1, basisset, 0, NULL, integralInfo, 0, do_basis_normalization, skip_sort_shells);
return b.noOfBasisFuncs;
}
/** a factory method generating new BasisInfo struct with permuted
shells and basis functions.
@param shellMap vector defining the permutation of shells.
newShell(i) = this.shell(shellMap(i));
@param ii IntegralInfo structure needed to reconstruct the
primitive gaussian data.
*/
BasisInfoStruct*
BasisInfoStruct::permuteShells(const int *shellMap,
const IntegralInfo& ii) const
{
BasisInfoStruct *res = new BasisInfoStruct(use_6_d_funcs);
res->noOfShells = noOfShells;
res->shellList = new ShellSpecStruct[noOfShells];
for(int i = 0; i<noOfShells; i++)
res->shellList[i] = shellList[shellMap[i]];
if(res->get_basis_funcs() != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_basis_funcs");
delete res;
return NULL;
}
if(res->getSimplePrimitivesAll(ii) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in getSimplePrimitivesAll");
delete res;
return NULL;
}
return res;
}
/** Normalizes shells so that the overlap of each basis function with itself will be 1.
This is done by explicitly generating each basis function in each shell and
computing the overlap. It is verified that all functions within the same shell
have the same normalization factor.
*/
int BasisInfoStruct::normalizeShells(const IntegralInfo& integralInfo)
{
ergo_real normFactorTot_min = 1e22;
ergo_real normFactorTot_max = 0;
// Adapt tolerance to machine accuracy to be able to run with different precision.
ergo_real max_allowed_difference = template_blas_sqrt(get_machine_epsilon());
SquareFuncIntegrator sfi;
for(int i = 0; i < this->noOfShells; i++) {
ShellSpecStruct* currShell = &this->shellList[i];
ergo_real normFactorShell_min = 1e22;
ergo_real normFactorShell_max = 0;
int nFunctions = currShell->noOfBasisFuncs;
if(nFunctions <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in BasisInfoStruct::normalizeShells: (nFunctions <= 0).");
return -1;
}
for(int j = 0; j < nFunctions; j++) {
BasisFuncStruct basisFunc;
basisFunc.noOfContr = currShell->noOfContr;
for(int kk = 0; kk < currShell->noOfContr; kk++) {
basisFunc.coeffList[kk] = currShell->coeffList[kk];
basisFunc.exponentList[kk] = currShell->exponentList[kk];
} /* END FOR kk */
for(int kk = 0; kk < 3; kk++)
basisFunc.centerCoords[kk] = currShell->centerCoords[kk];
basisFunc.shellType = currShell->shellType;
basisFunc.functionNumber = j;
// Compute integral of this basis function squared, for normalization.
ergo_real integralValue =
sfi.computeIntegralOfSquareOfBasisFunc(integralInfo, &basisFunc, use_6_d_funcs);
ergo_real normalizationFactor = (ergo_real)1.0 / template_blas_sqrt(integralValue);
if(normalizationFactor < normFactorShell_min)
normFactorShell_min = normalizationFactor;
if(normalizationFactor > normFactorShell_max)
normFactorShell_max = normalizationFactor;
} /* END FOR j */
ergo_real absdiff = template_blas_fabs(normFactorShell_max - normFactorShell_min);
if(absdiff > max_allowed_difference) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in BasisInfoStruct::normalizeShells: different norm factors within shell, absdiff = %g.", (double)absdiff);
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "normFactorShell_min = %22.15g normFactorShell_max = %22.15g", (double)normFactorShell_min, (double)normFactorShell_max);
return -1;
}
// Use average. This should not matter, they should be the same anyway.
ergo_real normalizationFactor = 0.5 * (normFactorShell_max + normFactorShell_min);
if(normalizationFactor < normFactorTot_min)
normFactorTot_min = normalizationFactor;
if(normalizationFactor > normFactorTot_max)
normFactorTot_max = normalizationFactor;
for(int kk = 0; kk < currShell->noOfContr; kk++)
currShell->coeffList[kk] *= normalizationFactor;
} /* END FOR i each shell */
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS,
"BasisInfoStruct::normalizeShells finished, normalizationFactor min max : %15.11f %15.11f",
(double)normFactorTot_min, (double)normFactorTot_max);
return 0;
}
/** creates list of 'basis functions', and set startIndexInMatrix for
each shell. */
int BasisInfoStruct::get_basis_funcs()
{
int nShells = this->noOfShells;
int count = 0;
for(int i = 0; i < nShells; i++) {
ShellSpecStruct* currShell = &this->shellList[i];
currShell->startIndexInMatrix = count;
count += currShell->noOfBasisFuncs;
}
this->noOfBasisFuncs = count;
this->basisFuncList = new BasisFuncStruct[count];
count = 0;
for(int i = 0; i < nShells; i++) {
ShellSpecStruct* currShell = &this->shellList[i];
int nFunctions = currShell->noOfBasisFuncs;
for(int j = 0; j < nFunctions; j++) {
this->basisFuncList[count].noOfContr = currShell->noOfContr;
for(int kk = 0; kk < currShell->noOfContr; kk++) {
this->basisFuncList[count].coeffList[kk] = currShell->coeffList[kk];
this->basisFuncList[count].exponentList[kk] =
currShell->exponentList[kk];
} /* END FOR kk */
for(int kk = 0; kk < 3; kk++)
this->basisFuncList[count].centerCoords[kk] =
currShell->centerCoords[kk];
this->basisFuncList[count].shellType = currShell->shellType;
this->basisFuncList[count].functionNumber = j;
count++;
} /* END FOR j */
} /* END FOR i each shell */
if(count != this->noOfBasisFuncs) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_basis_funcs: "
"(count != this->noOfBasisFuncs)");
return -1;
}
return 0;
}
int BasisInfoStruct::getSimplePrimitivesAll(const IntegralInfo& integralInfo)
{
BasisFuncStruct* currBasisFunc;
int nbast = this->noOfBasisFuncs;
const int MAX_NO_OF_PRIMITIVES_PER_BASIS_FUNC = 44; // Guess here to be able to preallocate large enough buffer
int maxNoOfSimplePrimsTot = nbast * MAX_NO_OF_PRIMITIVES_PER_BASIS_FUNC;
DistributionSpecStruct* list = new DistributionSpecStruct[maxNoOfSimplePrimsTot];
/* create list of 'simple primitives' */
int n = 0;
for(int i = 0; i < nbast; i++) {
currBasisFunc = &basisFuncList[i];
int noOfPrimitives = get_simple_primitives(currBasisFunc,
list,
n,
maxNoOfSimplePrimsTot,
integralInfo,
use_6_d_funcs);
if(noOfPrimitives <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_simple_primitives");
return -1;
}
currBasisFunc->noOfSimplePrimitives = noOfPrimitives;
currBasisFunc->simplePrimitiveIndex = n;
n += noOfPrimitives;
} /* END FOR i */
if(simplePrimitiveList) {
printf("Releasing old simple primitive list\n");
delete []simplePrimitiveList;
}
this->simplePrimitiveList = new DistributionSpecStruct[n];
memcpy(this->simplePrimitiveList, list, n * sizeof(DistributionSpecStruct));
delete [] list;
this->noOfSimplePrimitives = n;
return 0;
}
/** Initializes all the fields to sane values. */
BasisInfoStruct::BasisInfoStruct(int use_6_d_funcs_) :
use_6_d_funcs(use_6_d_funcs_),
noOfShells(0),
shellList(NULL),
noOfBasisFuncs(0),
basisFuncList(NULL),
noOfSimplePrimitives(0),
simplePrimitiveList(NULL)
{
}
/** Copies values from another BasisInfoStruct. */
BasisInfoStruct::BasisInfoStruct(const BasisInfoStruct & b) :
use_6_d_funcs(b.use_6_d_funcs),
noOfShells(b.noOfShells),
noOfBasisFuncs(b.noOfBasisFuncs),
noOfSimplePrimitives(b.noOfSimplePrimitives)
{
shellList = new ShellSpecStruct[noOfShells];
memcpy(shellList, b.shellList, noOfShells*sizeof(ShellSpecStruct));
basisFuncList = new BasisFuncStruct[noOfBasisFuncs];
memcpy(basisFuncList, b.basisFuncList, noOfBasisFuncs*sizeof(BasisFuncStruct));
simplePrimitiveList = new DistributionSpecStruct[noOfSimplePrimitives];
memcpy(simplePrimitiveList, b.simplePrimitiveList, noOfSimplePrimitives*sizeof(DistributionSpecStruct));
}
/** Function needed for Chunks&Tasks usage. */
void BasisInfoStruct::write_to_buffer ( char * dataBuffer, size_t const bufferSize ) const {
// First store the 4 int numbers.
char* p = dataBuffer;
if(bufferSize < get_size())
throw std::runtime_error("Error in BasisInfoStruct::write_to_buffer: bufferSize too small.");
memcpy(p, &noOfShells, sizeof(int));
p += sizeof(int);
memcpy(p, &noOfBasisFuncs, sizeof(int));
p += sizeof(int);
memcpy(p, &noOfSimplePrimitives, sizeof(int));
p += sizeof(int);
memcpy(p, &use_6_d_funcs, sizeof(int));
p += sizeof(int);
// There are three lists that need to be stored. Take care of them one by one.
// shellList
memcpy(p, shellList, noOfShells * sizeof(ShellSpecStruct));
p += noOfShells * sizeof(ShellSpecStruct);
// basisFuncList
memcpy(p, basisFuncList, noOfBasisFuncs * sizeof(BasisFuncStruct));
p += noOfBasisFuncs * sizeof(BasisFuncStruct);
// simplePrimitiveList
memcpy(p, simplePrimitiveList, noOfSimplePrimitives * sizeof(DistributionSpecStruct));
p += noOfSimplePrimitives * sizeof(DistributionSpecStruct);
// DONE!
}
/** Function needed for Chunks&Tasks usage. */
size_t BasisInfoStruct::get_size() const {
return 4 * sizeof(int)
+ noOfShells * sizeof(ShellSpecStruct)
+ noOfBasisFuncs * sizeof(BasisFuncStruct)
+ noOfSimplePrimitives * sizeof(DistributionSpecStruct);
}
/** Function needed for Chunks&Tasks usage. */
void BasisInfoStruct::assign_from_buffer ( char const * dataBuffer, size_t const bufferSize) {
// First get the 4 int numbers.
const char* p = dataBuffer;
if(bufferSize < 4 * sizeof(int))
throw std::runtime_error("Error in BasisInfoStruct::assign_from_buffer: bufferSize too small.");
memcpy(&noOfShells, p, sizeof(int));
p += sizeof(int);
memcpy(&noOfBasisFuncs, p, sizeof(int));
p += sizeof(int);
memcpy(&noOfSimplePrimitives, p, sizeof(int));
p += sizeof(int);
memcpy(&use_6_d_funcs, p, sizeof(int));
p += sizeof(int);
// There are three lists that need to be set up. Take care of them one by one.
// shellList
shellList = new ShellSpecStruct[noOfShells];
memcpy(shellList, p, noOfShells * sizeof(ShellSpecStruct));
p += noOfShells * sizeof(ShellSpecStruct);
// basisFuncList
basisFuncList = new BasisFuncStruct[noOfBasisFuncs];
memcpy(basisFuncList, p, noOfBasisFuncs * sizeof(BasisFuncStruct));
p += noOfBasisFuncs * sizeof(BasisFuncStruct);
// simplePrimitiveList
simplePrimitiveList = new DistributionSpecStruct[noOfSimplePrimitives];
memcpy(simplePrimitiveList, p, noOfSimplePrimitives * sizeof(DistributionSpecStruct));
p += noOfSimplePrimitives * sizeof(DistributionSpecStruct);
// DONE!
if(static_cast<size_t>(p-dataBuffer) > bufferSize)
throw std::runtime_error("Error: (p > bufferSize).");
}
BasisInfoStruct::~BasisInfoStruct()
{
if(shellList) delete [] shellList;
if(basisFuncList) delete [] basisFuncList;
if(simplePrimitiveList) delete [] simplePrimitiveList;
}
/** Compute safe upper limit for largest possible distance between any
two basis functions in given basis set.
*/
ergo_real getSafeMaxDistance(const BasisInfoStruct & basisInfo)
{
ergo_real minCoords[3];
ergo_real maxCoords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
{
minCoords[coordNo] = basisInfo.basisFuncList[0].centerCoords[coordNo];
maxCoords[coordNo] = basisInfo.basisFuncList[0].centerCoords[coordNo];
}
for(int i = 0; i < basisInfo.noOfBasisFuncs; i++)
{
for(int coordNo = 0; coordNo < 3; coordNo++)
{
ergo_real curr = basisInfo.basisFuncList[i].centerCoords[coordNo];
if(curr < minCoords[coordNo])
minCoords[coordNo] = curr;
if(curr > maxCoords[coordNo])
maxCoords[coordNo] = curr;
}
}
ergo_real sum = 0;
for(int coordNo = 0; coordNo < 3; coordNo++)
{
ergo_real dx = maxCoords[coordNo] - minCoords[coordNo];
sum += dx*dx;
}
return template_blas_sqrt(sum);
}
|