1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file grid_hicu.cc
@brief Hierarchical Cubature (HiCu) grid generation.
@author: Elias Rudberg <em>responsible</em>
*/
/* The multi-scale cartesian cubature grid generator. The original
* implementation described in M. Challacombe, JCP 113(22),
* p.10037. This one is modified wrt to the paper.
*
* Elias Rudberg, 2004-04
*
* Modified by Elias in Feb-Apr 2010.
*/
#define __CVERSION__
#include <stdlib.h>
#include <cmath>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <pthread.h>
#include <stdexcept>
#include "grid_hicu.h"
#include "basisinfo.h"
#include "integrals_general.h"
#include "cubature_rules.h"
#include "utilities.h"
#include "pi.h"
#include "box_system.h"
#include "integrator.h"
#include "functionals.h"
#include "aos.h"
#include "dft_common.h"
#include "rho-mat.h"
#include "units.h"
static const int CUBATURE_RULE = 3;
static const int CUBATURE_RULE_2 = 6;
const real COORD_DIFF_FOR_SAMEPOINT_CRITERION = 1.0e-11; // FIXME! hard-coded constant here.
const real DISTR_PRODUCT_THRESHOLD = 1e-12; // FIXME! hard-coded constant here.
const real RELATIVE_DENSITY_VARIATION_LIMIT = 0.5; // FIXME! hard-coded constant here.
/* Cutoff value used to decide which gaussian products should be
ignored. A product with a lower coefficient than this will be
thrown away. */
const real DISTR_COEFF_CUTOFF_VALUE = 1e-12; // FIXME! hard-coded constant here.
/* FIXME: Descibe the meaning of this constant. */
const real TARGET_RHO_ERROR_FACTOR = 1e-4;
/* flag for test integration. If turned on, the grid file is
reopened after it has been created, and the density is integrated
using the newly created grid. Just to check that it gives the
same result as reported by the grid generation and by
the dft integrator. */
//static int global_doTestIntegration = 0;
/* Output level. 0 means minimum output, 1 means little output,
2 means a lot of output. */
//static int global_outputLevel = 1;
/* Threshold value for distributions. A gaussian is ignored in areas
where its value is below this threshold. A low value is
computationally expensive. */
//static real global_targetRhoError = 1.0e-11;
/* Main threshold error value for grid generation. The difference of
analytical and numerical integrals is forced below this value.
This is the most important parameter, and probably the only one
that a typical user should worry about. */
//static real global_maxerror = 1.0e-7;
pthread_mutex_t global_main_hicu_mutex = PTHREAD_MUTEX_INITIALIZER;
#define USE_EXP_STD
#define USE_ERF_STD
#define DO_EXTRA_ERROR_CHECKING
#define FILE_BATCH_N 1000000
#define MAX_NO_OF_POINTS_PER_BATCH 100
#define MAX_NO_OF_SHLBLOCKS 44444
#define EXPONENT_DIFF_LIMIT 1e-22
#define DISTR_CENTER_DIST_LIMIT 1e-22
#define N_BATCH_JOBS 22
#define MAX_NO_OF_POINTS_PER_WRITE 50000
#define HICU_SPARSE_MATRIX_ACCESS_ROUTINE at
//#define HICU_SPARSE_MATRIX_ACCESS_ROUTINE at_safe
const int HICU_GRID_PLOT_RESOLUTION = 50;
/*//////////////////////////////////////////////////////////////////////// */
/*///////////////// typedef section //////////////////////////////////// */
/*//////////////////////////////////////////////////////////////////////// */
typedef struct {
ShellSpecStruct s;
real extent;
} ShellSpecStructWithExtent;
typedef struct
{
int noOfShells;
ShellSpecStructWithExtent* shellList;
int nbast;
const Dft::Matrix* dmat;
BasisFuncStruct* basisFuncList;
int noOfDistributions;
DistributionSpecStruct* distrList;
} DensitySpecStruct;
struct rhoTreeNode_{
BoxStruct box;
struct rhoTreeNode_* child1; /* NULL for leaf node */
struct rhoTreeNode_* child2; /* NULL for leaf node */
int distrIndex; /* -1 for non-leaf node */
};
typedef struct rhoTreeNode_ rhoTreeNode;
struct GridGenerationParamsStruct {
real maxerrorPerBox;
real targetRhoError;
bool doDoubleChecking;
bool compareToRefined;
bool useEnergyCriterion;
bool useEnergyCriterionOnly;
bool useErrorPerVolume;
bool doVariationChecking;
GridGenerationParamsStruct() :
maxerrorPerBox(0), /* Must be set later. */
targetRhoError(0), /* Must be set later. */
doDoubleChecking(false),
compareToRefined(false),
useEnergyCriterion(false),
useEnergyCriterionOnly(false),
useErrorPerVolume(false),
doVariationChecking(false)
{ /* Constructor body. Do nothing here. */ }
};
struct compute_grid_for_box_params_struct
{
const BasisInfoStruct& bis;
DensitySpecStruct density;
int noOfNonzeroBasisFuncs;
int* nonZeroBasisFuncIndexList;
int noOfNonzeroShells;
int* nonZeroShellsIndexList;
std::vector<real> localFullDensityMatrix;
GridGenerationParamsStruct gridGenerationParams;
int nShlblocks;
int (*listShlblocks_otherformat)[2];
DftIntegratorBl* dftIntegrator;
real* dmagao;
explicit compute_grid_for_box_params_struct(const BasisInfoStruct& bis_) : bis(bis_) { }
};
typedef std::vector< std::vector< std::vector<int> > > tripleVectorOfInt;
struct ComputeGridResultValuesStruct {
real totalIntegralResultNumerical;
real totalIntegralResultAnalytical;
real totalIntegralResultEnergy;
real estimatedIntegralErrorEnergy;
real estimatedIntegralErrorDensity;
ComputeGridResultValuesStruct() :
totalIntegralResultNumerical(0),
totalIntegralResultAnalytical(0),
totalIntegralResultEnergy(0),
estimatedIntegralErrorEnergy(0),
estimatedIntegralErrorDensity(0)
{ /* Constructor. Do nothing here. */ }
};
struct compute_grid_thread_func_struct
{
const BasisInfoStruct& bis;
DensitySpecStruct* density;
rhoTreeNode* rhoTreeRootNode;
rhoTreeNode* rhoTreeRootNodeShells;
GridGenerationParamsStruct gridGenerationParams;
FILE* gridFile;
BoxStruct* startBox;
int Nx;
int Ny;
int Nz;
int maxNoOfRelevantDistrsPerBox;
pthread_mutex_t* fileMutex;
pthread_mutex_t* jobMutex;
pthread_t thread;
int* currJobNumber;
int noOfPoints; /* OUTPUT */
int noOfWrittenBatches; /* OUTPUT */
ComputeGridResultValuesStruct resultValues; /* OUTPUT */
int threadNo;
int resultCode;
bool generateSparsePatternOnly;
Dft::SparsePattern* sparsePattern;
tripleVectorOfInt* counterArrForPlot;
explicit compute_grid_thread_func_struct(const BasisInfoStruct& bis_) : bis(bis_) { }
};
/*//////////////////////////////////////////////////////////////////////// */
/*///////////////// end of typedef section ///////////////////////////// */
/*//////////////////////////////////////////////////////////////////////// */
/* Solid harmonics based on the table 6.3 of Molecular
* Electronic-Structure Theory by Helgaker, Jørgensen and Olsen. */
#define solid_harmonic_s_0(x, y, z, x2, y2, z2, r2) 1
/* Elias note: changed order here from 0 1 2 to 2 0 1 which seemed to help. */
#define solid_harmonic_p_2(x, y, z, x2, y2, z2, r2) x
#define solid_harmonic_p_0(x, y, z, x2, y2, z2, r2) y
#define solid_harmonic_p_1(x, y, z, x2, y2, z2, r2) z
#define solid_harmonic_d_0(x, y, z, x2, y2, z2, r2) (x * y)
#define solid_harmonic_d_1(x, y, z, x2, y2, z2, r2) (y * z)
#define solid_harmonic_d_2(x, y, z, x2, y2, z2, r2) ((2 * z2 - x2 - y2) / (2 * template_blas_sqrt((ergo_real)3)))
#define solid_harmonic_d_3(x, y, z, x2, y2, z2, r2) (x * z)
#define solid_harmonic_d_4(x, y, z, x2, y2, z2, r2) (0.5 * (x2 - y2))
#define solid_harmonic_f_0(x, y, z, x2, y2, z2, r2) ((0.5 * template_blas_sqrt(2.5) * (3 * x2 - y2) * y) / template_blas_sqrt((ergo_real)15))
#define solid_harmonic_f_1(x, y, z, x2, y2, z2, r2) (x * y * z)
#define solid_harmonic_f_2(x, y, z, x2, y2, z2, r2) (0.5 * template_blas_sqrt((ergo_real)1.5) * (5 * z2 - r2) * y / template_blas_sqrt((ergo_real)15))
#define solid_harmonic_f_3(x, y, z, x2, y2, z2, r2) (0.5 * (5 * z2 - 3 * r2) * z / template_blas_sqrt((ergo_real)15))
#define solid_harmonic_f_4(x, y, z, x2, y2, z2, r2) (0.5 * template_blas_sqrt((ergo_real)1.5) * (5 * z2 - r2) * x / template_blas_sqrt((ergo_real)15))
#define solid_harmonic_f_5(x, y, z, x2, y2, z2, r2) (0.5 * (x2 - y2) * z)
#define solid_harmonic_f_6(x, y, z, x2, y2, z2, r2) (0.5 * template_blas_sqrt((ergo_real)2.5) * (x2 - 3 * y2) * x / template_blas_sqrt((ergo_real)15))
static void
print_box(BoxStruct* box) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "print_box:");
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "min = %.11f max = %.11f",
(double)box->min[i], (double)box->max[i]);
} /* END FOR i */
}
static void
get_distribution_box(BoxStruct* box,
DistributionSpecStruct* distr,
real targetRhoError)
{
real targetError = targetRhoError;
real arg = distr->coeff / targetError;
if(arg < 0) arg *= -1;
if(arg < 1e-30)
throw std::runtime_error("error in get_distribution_box: (arg < 1e-30).");
real r1 = template_blas_log(arg);
if(r1 < 0) r1 *= -1;
real extent = template_blas_sqrt(r1 / distr->exponent);
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
box->min[i] = distr->centerCoords[i] - extent;
box->max[i] = distr->centerCoords[i] + extent;
} /* END FOR i */
} /* END get_distribution_box */
static void
get_shell_box(BoxStruct* box, ShellSpecStructWithExtent* shell) {
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
box->min[i] = shell->s.centerCoords[i] - shell->extent;
box->max[i] = shell->s.centerCoords[i] + shell->extent;
} /* END FOR i */
} /* END get_shell_box */
#if 0
static real
compute_density_at_point_simple(int n,
DensitySpecStruct* density,
const BasisInfoStruct & basisInfo,
ergo_real x,
ergo_real y,
ergo_real z)
{
const Dft::Matrix* dmat = density->dmat;
// first evaluate each basis function at the given point
const int MAX_NO_OF_BASIS_FUNCS = 8888;
if(n > MAX_NO_OF_BASIS_FUNCS)
throw std::runtime_error("error: (n > MAX_NO_OF_BASIS_FUNCS)");
ergo_real basisFuncValues[MAX_NO_OF_BASIS_FUNCS];
for(int i = 0; i < n; i++) {
ergo_real dx = x - basisInfo.basisFuncList[i].centerCoords[0];
ergo_real dy = y - basisInfo.basisFuncList[i].centerCoords[1];
ergo_real dz = z - basisInfo.basisFuncList[i].centerCoords[2];
ergo_real r2 = dx*dx + dy*dy + dz*dz;
int nPrims = basisInfo.basisFuncList[i].noOfSimplePrimitives;
int primIndex = basisInfo.basisFuncList[i].simplePrimitiveIndex;
ergo_real sum = 0;
for(int j = 0; j < nPrims; j++) {
DistributionSpecStruct* currPrim = &basisInfo.simplePrimitiveList[primIndex + j];
ergo_real factor = 1;
for(int k = 0; k < currPrim->monomialInts[0]; k++) factor *= dx;
for(int k = 0; k < currPrim->monomialInts[1]; k++) factor *= dy;
for(int k = 0; k < currPrim->monomialInts[2]; k++) factor *= dz;
sum += currPrim->coeff * factor * template_blas_exp(-currPrim->exponent*r2);
} // END FOR j
basisFuncValues[i] = sum;
} // END FOR i
ergo_real sum = 0;
// diagonal part
for(int i = 0; i < n; i++)
sum += dmat->at(i, i) * basisFuncValues[i] * basisFuncValues[i];
// non-diagonal part
for(int i = 0; i < n; i++)
for(int j = i+1; j < n; j++)
sum += 2 * dmat->at(i, j) * basisFuncValues[i] * basisFuncValues[j];
return sum;
}
#endif
static real
compute_value_at_point(
DensitySpecStruct* density,
int noOfNonzeroShells,
int* nonZeroShellsIndexList,
int noOfNonzeroBasFuncs,
int* nonZeroBasFuncsIndexList,
const real* localFullDensityMatrix,
real (*coor)[3],
real* workList)
{
ShellSpecStruct* currShell;
int i, j, count;
real expFactor, result, currivalue;
real xdiff, ydiff, zdiff;
real x0, y0, z0;
real x2, y2, z2, r2;
int nbast;
nbast = density->nbast;
// const Dft::Matrix* dmat = density->dmat;
if(noOfNonzeroBasFuncs > nbast)
throw std::runtime_error("error in compute_value_at_point: "
"(noOfNonzeroBasFuncs > nbast).");
/* compute values of contracted distributions at given point */
count = 0;
for(i = 0; i < noOfNonzeroShells; i++)
{
currShell = &density->shellList[nonZeroShellsIndexList[i]].s;
x0 = currShell->centerCoords[0];
y0 = currShell->centerCoords[1];
z0 = currShell->centerCoords[2];
xdiff = coor[0][0] - x0;
ydiff = coor[0][1] - y0;
zdiff = coor[0][2] - z0;
x2 = xdiff * xdiff;
y2 = ydiff * ydiff;
z2 = zdiff * zdiff;
r2 = x2 + y2 + z2;
/* compute expFactor (this is the same procedure for all shell types) */
expFactor = 0;
for(j = 0; j < currShell->noOfContr; j++)
expFactor += currShell->coeffList[j] *
template_blas_exp(-currShell->exponentList[j] * r2);
/* OK, expFactor computed */
/* now there will be a different number of entries */
/* depending on shell type */
switch(currShell->shellType)
{
case 0:
/* 's' type shell, 1 function */
workList[count] = expFactor *
solid_harmonic_s_0(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
break;
case 1:
/* 'p' type shell, 3 functions */
workList[count] = expFactor *
solid_harmonic_p_0(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_p_1(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_p_2(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
break;
case 2:
/* 'd' type shell, 5 functions */
workList[count] = expFactor *
solid_harmonic_d_0(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_d_1(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_d_2(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_d_3(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_d_4(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
break;
case 3:
/* 'f' type shell, 7 functions */
workList[count] = expFactor *
solid_harmonic_f_0(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_1(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_2(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_3(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_4(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_5(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
workList[count] = expFactor *
solid_harmonic_f_6(xdiff, ydiff, zdiff, x2, y2, z2, r2); count++;
break;
default:
throw std::runtime_error("error in compute_value_at_point: "
"only spdf type shells implemented");
} /* END SWITCH shellType */
} /* END FOR i (for each shell) */
if(count > nbast)
throw std::runtime_error("error in compute_value_at_point: (count > nbast).");
/* now use density matrix to obtain final result */
result = 0;
/* Diagonal part. */
for(i = 0; i < noOfNonzeroBasFuncs; i++)
result += localFullDensityMatrix[i*noOfNonzeroBasFuncs+i] * workList[i] * workList[i];
/* Off-diagonal part. */
for(i = 0; i < noOfNonzeroBasFuncs; i++) {
currivalue = workList[i];
for(j = i+1; j < noOfNonzeroBasFuncs; j++)
result += 2 * localFullDensityMatrix[i*noOfNonzeroBasFuncs+j] * currivalue * workList[j];
} /* END FOR i */
return result;
} /* END compute_value_at_point */
static real
compute_integral_from_points(const BasisInfoStruct& bis,
DensitySpecStruct* density,
int noOfNonzeroShells,
int* nonZeroShellsIndexList,
int noOfNonzeroBasFuncs,
int* nonZeroBasFuncsIndexList,
const real* localFullDensityMatrix,
int nPoints,
real (*coor)[3],
real* weight,
real* workList,
real & minValue,
real & maxValue,
real & maxAbsValue)
{
real sum = 0;
for(int i = 0; i < nPoints; i++) {
real value = compute_value_at_point(density,
noOfNonzeroShells,
nonZeroShellsIndexList,
noOfNonzeroBasFuncs,
nonZeroBasFuncsIndexList,
localFullDensityMatrix,
&coor[i],
workList);
if(i == 0) {
minValue = maxValue = value;
maxAbsValue = template_blas_fabs(value);
}
if(value < minValue)
minValue = value;
if(value > maxValue)
maxValue = value;
if(template_blas_fabs(value) > maxAbsValue)
maxAbsValue = template_blas_fabs(value);
#if 0
if(i == 0) {
// Verify value by computing in a differrent way.
real value2 = compute_density_at_point_simple(bis.noOfBasisFuncs,
density,
bis,
coor[i][0],
coor[i][1],
coor[i][2]);
real tol = 1e-11;
if(template_blas_fabs(value - value2) > tol)
throw "Error in compute_integral_from_points: (template_blas_fabs(value - value2) > tol).";
}
#endif
sum += value * weight[i];
} /* END FOR i */
return sum;
} /* END compute_integral_from_points */
#if 0
static float
hicuErf(float a)
{ return erff(a); }
static double
hicuErf(double a)
{ return erf(a); }
static long double
hicuErf(long double a)
{ return erfl(a); }
#endif
template<class Treal>
Treal hicuErf(Treal a) {
throw "Error: hicuErf default implementation does not exist.";
}
template<>
float
hicuErf(float a)
{ return erff(a); }
template<>
double
hicuErf(double a)
{ return erf(a); }
// Need to check HAVE_ERFL here, otherwise cannot compile in Cygwin.
#ifdef HAVE_ERFL
template<>
long double
hicuErf(long double a)
{ return erfl(a); }
#endif
#ifdef PRECISION_QUAD_FLT128
template<>
__float128
hicuErf(__float128 a)
{ return erfq(a); }
#endif
static real
to_power(real x, int n) {
real result = 1;
for(int i = 0; i < n; i++)
result *= x;
return result;
}
static real
compute_1d_gaussian_integral_recursive(real a, real b, int n, real alpha)
{
real result, sqrtalpha, term1, term2;
real aToPowerNminus1, bToPowerNminus1;
if(n == 0)
{
sqrtalpha = template_blas_sqrt(alpha);
result = template_blas_sqrt(pi/(4*alpha)) * (hicuErf(sqrtalpha*b)-hicuErf(sqrtalpha*a));
return result;
}
if(n == 1)
{
result = -(1 / (2*alpha)) * (template_blas_exp(-alpha*b*b) - template_blas_exp(-alpha*a*a));
return result;
}
if(n < 0)
throw std::runtime_error("error in 1dintegral: n < 0");
/* now we know that n >= 2 */
term1 = (n - 1) * compute_1d_gaussian_integral_recursive(a, b, n-2, alpha);
aToPowerNminus1 = to_power(a, n-1);
bToPowerNminus1 = to_power(b, n-1);
term2 =
bToPowerNminus1 * template_blas_exp(-alpha*b*b) -
aToPowerNminus1 * template_blas_exp(-alpha*a*a);
result = (term1 - term2) / (2 * alpha);
/* return 0; */
return result;
} /* END compute_1d_gaussian_integral_recursive */
static real
compute_1d_gaussian_integral(real a, real b, int n, real alpha)
{
real result, sqrtalpha, term1, term2;
// return compute_1d_gaussian_integral_recursive(a, b, n, alpha);
result = 0;
switch(n)
{
case 0:
sqrtalpha = template_blas_sqrt(alpha);
result = template_blas_sqrt(pi/(4*alpha)) * (hicuErf(sqrtalpha*b)-hicuErf(sqrtalpha*a));
break;
case 1:
result = -(1 / (2*alpha)) * (template_blas_exp(-alpha*b*b) - template_blas_exp(-alpha*a*a));
break;
case 2:
sqrtalpha = template_blas_sqrt(alpha);
term1 =
template_blas_sqrt(pi/(16*alpha*alpha*alpha)) *
(hicuErf(sqrtalpha*b) - hicuErf(sqrtalpha*a));
term2 = -(1 / (2 * alpha)) * (b*template_blas_exp(-alpha*b*b) - a*template_blas_exp(-alpha*a*a));
result = term1 + term2;
break;
case 3:
result = -(1 / (2*alpha*alpha)) * ((1+alpha*b*b)*template_blas_exp(-alpha*b*b) -
(1+alpha*a*a)*template_blas_exp(-alpha*a*a));
break;
default:
return compute_1d_gaussian_integral_recursive(a, b, n, alpha);
break;
} /* END SWITCH n */
return result;
} /* END compute_1d_gaussian_integral */
static real
compute_integral_over_box(DistributionSpecStruct* distr, BoxStruct* box)
{
real result, a, b, alpha;
int i, n;
result = distr->coeff;
alpha = distr->exponent;
for(i = 0; i < NO_OF_DIMENSIONS; i++)
{
n = distr->monomialInts[i];
a = box->min[i] - distr->centerCoords[i];
b = box->max[i] - distr->centerCoords[i];
result *= compute_1d_gaussian_integral(a, b, n, alpha);
} /* END FOR i */
return result;
} /* END compute_integral_over_box */
static int
get_rhotree_indexes_for_box(int* resultList, int resultListMaxCount, const rhoTreeNode* node, const BoxStruct* inputBoxPtr)
{
#define MAX_DEPTH 888
int n, i, overlap, currDepth;
const rhoTreeNode* nodeList[MAX_DEPTH];
int statusList[MAX_DEPTH];
const rhoTreeNode* currNode;
BoxStruct box;
const BoxStruct* currBox;
memcpy(&box, inputBoxPtr, sizeof(BoxStruct));
n = 0;
currDepth = 0;
nodeList[0] = node;
statusList[0] = 0;
while(currDepth >= 0)
{
if(statusList[currDepth] == 2)
currDepth--;
else
{
currNode = nodeList[currDepth];
currBox = &currNode->box;
/* check for box overlap */
overlap = 1;
for(i = 0; i < NO_OF_DIMENSIONS; i++)
{
if(currBox->min[i] > box.max[i])
overlap = 0;
if(currBox->max[i] < box.min[i])
overlap = 0;
} /* END FOR i */
if(overlap == 0)
currDepth--;
else
{
if(statusList[currDepth] == 0)
{
if(currNode->distrIndex >= 0)
{
if(resultList) {
assert(n < resultListMaxCount);
resultList[n] = currNode->distrIndex;
}
n++;
currDepth--;
}
else
{
statusList[currDepth] = 1;
currDepth++;
statusList[currDepth] = 0;
nodeList[currDepth] = currNode->child1;
}
} /* END IF status 0 */
else
{
/* status is 1 */
statusList[currDepth] = 2;
currDepth++;
statusList[currDepth] = 0;
nodeList[currDepth] = currNode->child2;
} /* END ELSE status 1 */
}
}
} /* END WHILE (currDepth >= 0) */
return n;
} /* END get_rhotree_indexes_for_box */
static void
callbackGga(DftIntegratorBl* grid, int bllen, real & energy) {
FunDensProp dp = { 0 };
assert(grid->ntypso >0);
for(int k = 0; k < bllen; k++) {
real weight = grid->weight[grid->curr_point+k];
dp.grada = 0.5*template_blas_sqrt(grid->g.grad[k][0]*grid->g.grad[k][0]+
grid->g.grad[k][1]*grid->g.grad[k][1]+
grid->g.grad[k][2]*grid->g.grad[k][2]);
dp. rhoa = dp.rhob = 0.5*grid->r.rho[k];
dp.gradb = dp.grada;
dp.gradab = dp.grada*dp.gradb;
if(dp.rhoa>1e-14) {
if(dp.grada<1e-35) dp.grada = 1e-35;
energy += selected_func->func(&dp)*weight;
}
}
}
static void
callbackLda(DftIntegratorBl *grid, int bllen, real & energy) {
FunDensProp dp = { 0 };
assert(grid->ntypso >0);
for(int k = 0; k < bllen; k++) {
real weight = grid->weight[grid->curr_point+k];
dp.rhoa = dp. rhob = 0.5*grid->r.rho[k];
energy += selected_func->func(&dp)*weight;
}
}
static void
integrate_density_and_energy(const BasisInfoStruct& bis,
DensitySpecStruct* density,
DftIntegratorBl* integrator,
real & electrons,
real & energy,
int noOfGridPoints,
real (*coor)[3],
real *weight,
real* dmagao) {
// Initialize integrator.
for(int kk = 0; kk < noOfGridPoints; kk++) {
for(int mm = 0; mm < 3; mm++)
integrator->coor[kk][mm] = coor[kk][mm];
integrator->weight[kk] = weight[kk];
}
int ipnt = 0;
integrator->curr_point = ipnt;
int len = noOfGridPoints;
int nder = integrator->dogga ? 1 : 0;
dft_get_orbs(len, integrator->atv, (real(*)[3]) &integrator->coor[ipnt][0],
integrator->shl_bl_cnt, (int(*)[2]) &integrator->shlblocks[0][0],
nder, bis);
// const real** dmatFullPtr = NULL;
int nbast = bis.noOfBasisFuncs;
const Dft::Matrix *dens = density->dmat;
if (dens->isSparse()) {
if(integrator->dogga)
getrho_blocked_gga(nbast,
*dens->asSparse(), integrator->atv,
integrator->bas_bl_cnt,
integrator->basblocks, integrator->shl_bl_cnt,
&dmagao[0], len, integrator->r.rho,
integrator->g.rad.a);
else
getrho_blocked_lda(nbast,
*dens->asSparse(),
integrator->atv,
integrator->bas_bl_cnt,
integrator->basblocks, integrator->shl_bl_cnt,
&dmagao[0], len, integrator->r.rho);
} else {
if(integrator->dogga)
getrho_blocked_gga(nbast,
dens->asFull(), integrator->atv,
integrator->bas_bl_cnt,
integrator->basblocks, integrator->shl_bl_cnt,
&dmagao[0], len, integrator->r.rho,
integrator->g.rad.a);
else
getrho_blocked_lda(nbast,
dens->asFull(),
integrator->atv,
integrator->bas_bl_cnt,
integrator->basblocks, integrator->shl_bl_cnt,
&dmagao[0], len, integrator->r.rho);
}
for(int j=0; j<len; j++)
electrons += integrator->weight[ipnt+j]*integrator->r.rho[j];
real energyTmp = 0;
if(selected_func->is_gga())
callbackGga(integrator, len, energyTmp);
else
callbackLda(integrator, len, energyTmp);
energy = energyTmp;
}
static int
compute_grid_for_box(compute_grid_for_box_params_struct* params,
int maxlen,
real (*coor)[3],
real *weight,
BoxStruct* box,
real analyticalIntegralValue,
real* workList,
ComputeGridResultValuesStruct & resultValues,
bool resolutionIsOk)
{
#define MAX_NO_OF_TEST_POINTS 1000
int Ngrid;
BoxStruct box1;
BoxStruct box2;
int bestcoord, nPoints1, nPoints2;
real dist, maxdist, halfway;
real IexactAbs;
real analyticalIntegralBox1, analyticalIntegralBox2;
real minDensityValue = 0;
real maxDensityValue = 0;
real maxDensityAbsValue = 0;
int splitBox = 1;
int noOfGridPoints = 0;
bool resolutionIsOkForNextLevel = resolutionIsOk;
// Compute box volume.
ergo_real boxVolume = 1;
for(int i = 0; i < NO_OF_DIMENSIONS; i++)
boxVolume *= (box->max[i] - box->min[i]);
ergo_real absErrorLimit = params->gridGenerationParams.maxerrorPerBox;
if(params->gridGenerationParams.useErrorPerVolume) {
// Modify absErrorLimit accordingly.
absErrorLimit *= boxVolume;
}
real Iapprox = 0; // To be computed below.
real Iexact = analyticalIntegralValue;
real xcEnergy = 0; // To be computed below.
real xcEnergyApproxError = 0; // To be computed below.
real densityApproxError = 0; // To be computed below.
if(params->gridGenerationParams.compareToRefined) {
/* Create several different grids for comparison: first a rough
grid where the cubature rule is only applied once for the whole
box, then refined grids where the cubature rule is applied in
(level)^3 sub-boxes. */
const int NLEVELSMAX = 4;
real integralResultList_density[NLEVELSMAX];
/* We choose the number of levels depending on how close we are to
the point when the density integral is itself already below
threshold. */
int noOfLevels = 3;
int resultLevelIndex = 0;
if(Iexact < absErrorLimit)
noOfLevels = 1;
else if(Iexact < absErrorLimit*10 && noOfLevels > 2)
noOfLevels = 2;
else if(Iexact < absErrorLimit*100 && noOfLevels > 3)
noOfLevels = 3;
if(resolutionIsOk && noOfLevels > 2)
noOfLevels = 2;
real integralResultList_energy [NLEVELSMAX];
for(int levelIdx = 0; levelIdx < noOfLevels; levelIdx++) {
real tmpCoor[MAX_NO_OF_TEST_POINTS][3];
real tmpWeight[MAX_NO_OF_TEST_POINTS];
int nBoxesPerDim = levelIdx+1;
integralResultList_density[levelIdx] = 0;
integralResultList_energy [levelIdx] = 0;
int count = 0;
for(int ix = 0; ix < nBoxesPerDim; ix++)
for(int iy = 0; iy < nBoxesPerDim; iy++)
for(int iz = 0; iz < nBoxesPerDim; iz++) {
BoxStruct boxTmp;
boxTmp.min[0] = box->min[0] + (ix+0) * (box->max[0] - box->min[0]) / nBoxesPerDim;
boxTmp.max[0] = box->min[0] + (ix+1) * (box->max[0] - box->min[0]) / nBoxesPerDim;
boxTmp.min[1] = box->min[1] + (iy+0) * (box->max[1] - box->min[1]) / nBoxesPerDim;
boxTmp.max[1] = box->min[1] + (iy+1) * (box->max[1] - box->min[1]) / nBoxesPerDim;
boxTmp.min[2] = box->min[2] + (iz+0) * (box->max[2] - box->min[2]) / nBoxesPerDim;
boxTmp.max[2] = box->min[2] + (iz+1) * (box->max[2] - box->min[2]) / nBoxesPerDim;
int nTmp = use_cubature_rule(MAX_NO_OF_TEST_POINTS-count,
&tmpCoor[count], &tmpWeight[count], &boxTmp, CUBATURE_RULE);
if(nTmp <= 0)
throw std::runtime_error("error in use_cubature_rule.");
real electronsTmp = 0;
real energyTmp = 0;
integrate_density_and_energy(params->bis,
¶ms->density,
params->dftIntegrator,
electronsTmp,
energyTmp,
nTmp,
&tmpCoor[count],
&tmpWeight[count],
params->dmagao);
integralResultList_density[levelIdx] += electronsTmp;
integralResultList_energy [levelIdx] += energyTmp;
count += nTmp;
}
if(levelIdx == resultLevelIndex) {
if(count > maxlen)
throw std::runtime_error("error in compute_grid_for_box: (count > maxlen).");
for(int i = 0; i < count; i++) {
for(int k = 0; k < 3; k++)
coor[i][k] = tmpCoor[i][k];
weight[i] = tmpWeight[i];
}
noOfGridPoints = count;
Iapprox = integralResultList_density[levelIdx];
xcEnergy = integralResultList_energy[levelIdx];
}
}
// Compute errors in density integrals by comparing to analytical value.
real integralErrors_density[NLEVELSMAX];
for(int levelIdx = 0; levelIdx < noOfLevels; levelIdx++)
integralErrors_density[levelIdx] = template_blas_fabs(integralResultList_density[levelIdx] - analyticalIntegralValue);
// Compute errors in energy integrals by comparing to most accurate value.
real integralErrors_energy[NLEVELSMAX];
for(int levelIdx = 0; levelIdx < NLEVELSMAX; levelIdx++)
integralErrors_energy[levelIdx] = 0;
for(int levelIdx = 0; levelIdx < noOfLevels-1; levelIdx++) {
integralErrors_energy[levelIdx] =
template_blas_fabs(integralResultList_energy[levelIdx] - integralResultList_energy[noOfLevels-1]);
// printf("integralErrors_energy[levelIdx] = %33.22f\n", integralErrors_energy[levelIdx]);
}
// Compute improvement factors;
real improvementFactorList_density[NLEVELSMAX-1];
for(int levelIdx = 0; levelIdx < NLEVELSMAX-1; levelIdx++)
improvementFactorList_density[levelIdx] = 0;
for(int levelIdx = 0; levelIdx < noOfLevels-1; levelIdx++)
improvementFactorList_density[levelIdx] =
integralErrors_density[levelIdx] / integralErrors_density[levelIdx+1];
real improvementFactorList_energy [NLEVELSMAX-2];
for(int levelIdx = 0; levelIdx < NLEVELSMAX-2; levelIdx++)
improvementFactorList_energy[levelIdx] = 0;
for(int levelIdx = 0; levelIdx < noOfLevels-2; levelIdx++)
improvementFactorList_energy[levelIdx] =
integralErrors_energy[levelIdx] / integralErrors_energy[levelIdx+1];
ergo_real expectedErrorFromDensityEvaluations =
noOfGridPoints * params->gridGenerationParams.targetRhoError * boxVolume;
#if 0
printf("resolutionIsOk = %d\n", (int)resolutionIsOk);
printf("Improvement factors, density: ");
for(int levelIdx = 0; levelIdx < noOfLevels-1; levelIdx++)
printf("%6.2f ", improvementFactorList_density[levelIdx]);
printf(" energy: ");
for(int levelIdx = 0; levelIdx < noOfLevels-2; levelIdx++)
printf("%6.2f ", improvementFactorList_energy[levelIdx]);
printf("\n");
printf("integralErrors_density[resultLevelIndex] = %33.22f\n",
integralErrors_density[resultLevelIndex]);
printf("expectedErrorFromDensityEvaluations = %33.22f\n", expectedErrorFromDensityEvaluations);
printf("integralErrors_energy[resultLevelIndex] = %33.22f\n",
integralErrors_energy[resultLevelIndex]);
printf("absErrorLimit = %33.22f\n", absErrorLimit);
printf("Iexact = %33.22f\n", Iexact);
#endif
ergo_real expectedImprovementFactors[5];
expectedImprovementFactors[0] = 64.00;
expectedImprovementFactors[1] = 11.39;
expectedImprovementFactors[2] = 5.62;
expectedImprovementFactors[3] = 3.81;
expectedImprovementFactors[4] = 2.99;
if(noOfLevels > 5)
throw std::runtime_error("Error: (noOfLevels > 5).");
densityApproxError = integralErrors_density[resultLevelIndex];
xcEnergyApproxError = integralErrors_energy[resultLevelIndex];
// TODO: use some clever splitBox criterion here.
splitBox = 0;
if(params->gridGenerationParams.useEnergyCriterionOnly == false) {
if(densityApproxError > absErrorLimit)
splitBox = 1;
}
if(params->gridGenerationParams.useEnergyCriterion) {
if(xcEnergyApproxError > absErrorLimit)
splitBox = 1;
}
if(!resolutionIsOk) {
// Also check that all improvement factors are reasonably near expected values.
resolutionIsOkForNextLevel = true;
if(params->gridGenerationParams.useEnergyCriterionOnly == false) {
for(int levelIdx = 0; levelIdx < noOfLevels-1; levelIdx++) {
if(improvementFactorList_density[levelIdx] < expectedImprovementFactors[levelIdx]*0.5)
resolutionIsOkForNextLevel = false;
}
}
if(params->gridGenerationParams.useEnergyCriterion) {
for(int levelIdx = 0; levelIdx < noOfLevels-2; levelIdx++) {
if(improvementFactorList_energy[levelIdx] < expectedImprovementFactors[levelIdx]*0.5)
resolutionIsOkForNextLevel = false;
}
}
if(!resolutionIsOkForNextLevel)
splitBox = 1;
}
if(params->gridGenerationParams.useEnergyCriterionOnly == false) {
/* If the integral value is itself below the error limit, we are
happy. This happens for example if the integral is completely
zero, then it makes no sense to compare different cubature
rules. */
if(Iexact < absErrorLimit)
splitBox = 0;
/* If the expected error from the numerical evaluation of the
density is comparable to the integral error, there is no point
in dividing box further. */
if(integralErrors_density[resultLevelIndex] < expectedErrorFromDensityEvaluations*2)
splitBox = 0;
}
/* If the computed errors on all levels are well below the
threshold, we are happy. */
bool allErrorsWellBelowThreshold = true;
if(params->gridGenerationParams.useEnergyCriterionOnly == false) {
for(int levelIdx = 0; levelIdx < noOfLevels; levelIdx++) {
if(integralErrors_density[levelIdx] > absErrorLimit/100)
allErrorsWellBelowThreshold = false;
}
}
if(params->gridGenerationParams.useEnergyCriterion) {
for(int levelIdx = 0; levelIdx < noOfLevels-1; levelIdx++) {
if(integralErrors_energy[levelIdx] > absErrorLimit/100)
allErrorsWellBelowThreshold = false;
}
}
if(allErrorsWellBelowThreshold)
splitBox = 0;
// printf("splitBox = %d\n\n", splitBox);
} else { // old version
/* Define Ngrid points inside box, with corresponding weights */
/* this is where the 'cubature rule' is used */
Ngrid = use_cubature_rule(maxlen, coor, weight, box, CUBATURE_RULE);
if(Ngrid <= 0)
throw std::runtime_error("error in use_cubature_rule.");
noOfGridPoints = Ngrid;
Iapprox = compute_integral_from_points(params->bis,
¶ms->density,
params->noOfNonzeroShells,
params->nonZeroShellsIndexList,
params->noOfNonzeroBasisFuncs,
params->nonZeroBasisFuncIndexList,
¶ms->localFullDensityMatrix[0],
Ngrid,
&coor[0],
weight,
workList,
minDensityValue,
maxDensityValue,
maxDensityAbsValue);
IexactAbs = Iexact;
if(IexactAbs < 0) IexactAbs *= -1;
/* compute absolute error */
densityApproxError = template_blas_fabs(Iexact - Iapprox);
/* check if error is too large */
splitBox = 1;
#if 0
/* It may happen that the box is now so small that the absErrorLimit
is so small that it approaches the accuracy with which we can
compute the density (targetRhoError). In that case there is no
point in using such a small absErrorLimit; we then set it to a
value we can handle. */
const real DENSITY_ACCURACY_COMPARISON_FACTOR = 10.0; // FIXME! hard-coded constant here.
if(absErrorLimit < params->targetRhoError*DENSITY_ACCURACY_COMPARISON_FACTOR)
absErrorLimit = params->targetRhoError*DENSITY_ACCURACY_COMPARISON_FACTOR;
#endif
/* If the integral value is itself below the error limit, we are
happy. This happens for example if the integral is completely
zero, then it makes no sense to compare different cubature
rules. */
if(Iexact < absErrorLimit)
splitBox = 0;
if((splitBox == 1) && (densityApproxError < absErrorLimit))
{
if(params->gridGenerationParams.doDoubleChecking) {
/* it seems that the error is small enough. */
/* however, this could be a coincidence. */
/* to check, compare with denser grid */
real testCoor[MAX_NO_OF_TEST_POINTS][3];
real testWeight[MAX_NO_OF_TEST_POINTS];
real testIapprox;
int Ngrid2;
Ngrid2 = use_cubature_rule(MAX_NO_OF_TEST_POINTS,
testCoor, testWeight, box, CUBATURE_RULE_2);
if(Ngrid2 <= 0)
throw std::runtime_error("error in use_cubature_rule");
real minValueDummy = 0, maxValueDummy = 0, maxAbsValueDummy = 0;
testIapprox =
compute_integral_from_points(params->bis,
¶ms->density,
params->noOfNonzeroShells,
params->nonZeroShellsIndexList,
params->noOfNonzeroBasisFuncs,
params->nonZeroBasisFuncIndexList,
¶ms->localFullDensityMatrix[0],
Ngrid2,
&testCoor[0],
testWeight,
workList,
minValueDummy,
maxValueDummy,
maxAbsValueDummy);
real testAbsError = template_blas_fabs(Iexact - testIapprox);
/* We demand that the denser grid should also work. */
if(testAbsError < absErrorLimit)
splitBox = 0;
}
else
splitBox = 0;
}
if(splitBox == 0 && Iexact > absErrorLimit*2 && params->gridGenerationParams.doVariationChecking) {
/* Check that variation of density is not too large. */
real diff = maxDensityValue - minDensityValue;
real relativeVariation = diff / maxDensityAbsValue;
if(relativeVariation > RELATIVE_DENSITY_VARIATION_LIMIT)
splitBox = 1;
}
} // end else old version
if(splitBox == 1)
{
/* error too large, split box into box1 and box2 */
/* first determine in which coordinate direction to do the split */
maxdist = 0;
bestcoord = -1;
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
dist = box->max[i] - box->min[i];
if(dist > maxdist) {
maxdist = dist;
bestcoord = i;
}
} /* END FOR i */
if(bestcoord < 0)
throw std::runtime_error("error in compute_grid_for_box: (bestcoord < 0).");
/* now create new boxes box1 and box2 */
for(int i = 0; i < NO_OF_DIMENSIONS; i++)
{
if(i == bestcoord)
{
/* direction of split */
halfway = (box->max[i] + box->min[i]) / 2;
box1.min[i] = box->min[i];
box1.max[i] = halfway;
box2.min[i] = halfway;
box2.max[i] = box->max[i];
}
else
{
/* other direction, simply copy bounds */
box1.min[i] = box->min[i];
box1.max[i] = box->max[i];
box2.min[i] = box->min[i];
box2.max[i] = box->max[i];
}
} /* END FOR i */
/* now boxes box1 and box2 are now created */
analyticalIntegralBox1 = 0;
for(int i = 0; i < params->density.noOfDistributions; i++)
analyticalIntegralBox1 +=
compute_integral_over_box(¶ms->density.distrList[i], &box1);
#if 1
analyticalIntegralBox2 =
analyticalIntegralValue - analyticalIntegralBox1;
#else
analyticalIntegralBox2 = 0;
for(i = 0; i < params->density.noOfDistributions; i++)
analyticalIntegralBox2 +=
compute_integral_over_box(¶ms->density.distrList[i], &box2);
#endif
/* create grid points for box1 */
nPoints1 = compute_grid_for_box(params,
maxlen,
coor,
weight,
&box1,
analyticalIntegralBox1,
workList,
resultValues,
resolutionIsOkForNextLevel);
if(nPoints1 < 0)
throw std::runtime_error("error in compute_grid_for_box: (nPoints1 < 0).");
/* create grid points for box2 */
nPoints2 = compute_grid_for_box(params,
maxlen-nPoints1,
&coor[nPoints1],
&weight[nPoints1],
&box2,
analyticalIntegralBox2,
workList,
resultValues,
resolutionIsOkForNextLevel);
if(nPoints2 < 0)
throw std::runtime_error("error in compute_grid_for_box: (nPoints2 < 0).");
noOfGridPoints = nPoints1 + nPoints2;
} /* END IF error too large */
else
{
/* error acceptable, */
/* the computed grid points for this box are good enough. */
/* do nothing more, just return the number of points */
resultValues.totalIntegralResultNumerical += Iapprox;
resultValues.totalIntegralResultAnalytical += analyticalIntegralValue;
resultValues.totalIntegralResultEnergy += xcEnergy;
resultValues.estimatedIntegralErrorEnergy += xcEnergyApproxError;
resultValues.estimatedIntegralErrorDensity += densityApproxError;
}
return noOfGridPoints;
} /* END compute_grid_for_box */
static rhoTreeNode*
BuildRhoTreeBranch(int noOfDistributionsTot,
DistributionSpecStruct* rho_alt_1,
ShellSpecStructWithExtent* rho_alt_2,
int distrIndexListN,
int* distrIndexList,
real targetRhoError)
{
int n1, n2, bestCoord;
real currCoord, currDiff, maxDiff, extent1, extent2, testCoord;
int tempInt;
if(distrIndexListN < 1) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in BuildRhoTreeBranch: (distrIndexListN < 1), "
"distrIndexListN = %i", distrIndexListN);
return NULL;
}
rhoTreeNode* newNode = new rhoTreeNode;
/* compute bounding box for this node */
if(rho_alt_1 != NULL)
get_distribution_box(&newNode->box, &rho_alt_1[distrIndexList[0]], targetRhoError);
else
get_shell_box(&newNode->box, &rho_alt_2[distrIndexList[0]]);
BoxStruct tempBox;
for(int i = 1; i < distrIndexListN; i++) {
if(rho_alt_1 != NULL)
get_distribution_box(&tempBox, &rho_alt_1[distrIndexList[i]], targetRhoError);
else
get_shell_box(&tempBox, &rho_alt_2[distrIndexList[i]]);
for(int j = 0; j < NO_OF_DIMENSIONS; j++) {
if(tempBox.min[j] < newNode->box.min[j])
newNode->box.min[j] = tempBox.min[j];
if(tempBox.max[j] > newNode->box.max[j])
newNode->box.max[j] = tempBox.max[j];
} /* END FOR j */
} /* END FOR i */
/* check if only one distr */
if(distrIndexListN == 1)
{
/* OK, this becomes a leaf node */
newNode->child1 = NULL;
newNode->child2 = NULL;
newNode->distrIndex = distrIndexList[0];
return newNode;
}
/* There is more than one distribution */
/* Get box that encloses all distributions */
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
if(rho_alt_1 != NULL) {
tempBox.min[i] = rho_alt_1[distrIndexList[0]].centerCoords[i];
tempBox.max[i] = rho_alt_1[distrIndexList[0]].centerCoords[i];
}
else {
tempBox.min[i] = rho_alt_2[distrIndexList[0]].s.centerCoords[i];
tempBox.max[i] = rho_alt_2[distrIndexList[0]].s.centerCoords[i];
}
} /* END FOR i */
for(int i = 1; i < distrIndexListN; i++) {
for(int j = 0; j < NO_OF_DIMENSIONS; j++) {
if(rho_alt_1 != NULL)
currCoord = rho_alt_1[distrIndexList[i]].centerCoords[j];
else
currCoord = rho_alt_2[distrIndexList[i]].s.centerCoords[j];
if(tempBox.min[j] > currCoord) tempBox.min[j] = currCoord;
if(tempBox.max[j] < currCoord) tempBox.max[j] = currCoord;
} /* END FOR j */
} /* END FOR i */
/* check if all distrs are at the same point */
bestCoord = -1;
maxDiff = 0;
for(int i = 0; i < NO_OF_DIMENSIONS; i++) {
currDiff = tempBox.max[i] - tempBox.min[i];
if(currDiff > maxDiff)
{
bestCoord = i;
maxDiff = currDiff;
}
} /* END FOR i */
bool samePoint = false;
if(bestCoord < 0)
samePoint = true;
else {
if(maxDiff > COORD_DIFF_FOR_SAMEPOINT_CRITERION) {
samePoint = false;
}
else
samePoint = true;
}
if(samePoint) {
/* all distrs are at the same point */
/* sort by extent */
/* bubble sort (this could be optimized) */
for(int i = 0; i < (distrIndexListN-1); i++) {
for(int j = 0; j < (distrIndexListN-1-i); j++) {
if(rho_alt_1 != NULL) {
extent1 = rho_alt_1[distrIndexList[j]].extent;
extent2 = rho_alt_1[distrIndexList[j+1]].extent;
}
else {
extent1 = rho_alt_2[distrIndexList[j]].extent;
extent2 = rho_alt_2[distrIndexList[j+1]].extent;
}
if(extent1 > extent2) {
/* do switch */
tempInt = distrIndexList[j];
distrIndexList[j] = distrIndexList[j+1];
distrIndexList[j+1] = tempInt;
} /* END IF SWITCH */
} /* END FOR j bubble sort */
} /* END FOR i bubble sort */
/* check sort */
for(int i = 0; i < (distrIndexListN-1); i++) {
if(rho_alt_1 != NULL) {
extent1 = rho_alt_1[distrIndexList[i]].extent;
extent2 = rho_alt_1[distrIndexList[i+1]].extent;
}
else {
extent1 = rho_alt_2[distrIndexList[i]].extent;
extent2 = rho_alt_2[distrIndexList[i+1]].extent;
}
if(extent1 > extent2)
throw std::runtime_error("error in BuildRhoTreeBranch: list not sorted.");
} /* END FOR i check sort */
/* create 2 new boxes: small extent and large extent */
n1 = distrIndexListN / 2;
n2 = distrIndexListN - n1;
}
else {
/* all distrs are NOT at the same point */
/* Compute limit as midpoint between min and max for bestCoord, try to avoid rounding errors. */
real tmpDiff = tempBox.max[bestCoord] - tempBox.min[bestCoord];
real limit = tempBox.min[bestCoord] + tmpDiff / 2;
std::vector<int> tempList(distrIndexListN);
n1 = 0;
n2 = 0;
for(int i = 0; i < distrIndexListN; i++) {
if(rho_alt_1 != NULL)
testCoord = rho_alt_1[distrIndexList[i]].centerCoords[bestCoord];
else
testCoord = rho_alt_2[distrIndexList[i]].s.centerCoords[bestCoord];
if(testCoord > limit) {
tempList[n1] = distrIndexList[i];
n1++;
}
else {
tempList[distrIndexListN-1-n2] = distrIndexList[i];
n2++;
}
} /* END FOR i */
if((n1 == 0) || (n2 == 0)) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in BuildRhoTreeBranch (after split): "
"n1 = %i, n2 = %i\n", n1, n2);
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "maxDiff = %33.22f = %6.3g", (double)maxDiff, (double)maxDiff);
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "distrIndexListN = %d", distrIndexListN);
return NULL;
}
memcpy(distrIndexList, &tempList[0], distrIndexListN * sizeof(int));
}
if((n1 == 0) || (n2 == 0)) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in BuildRhoTreeBranch: n1 = %i, n2 = %i\n", n1, n2);
return NULL;
}
rhoTreeNode* child1 = BuildRhoTreeBranch(noOfDistributionsTot, rho_alt_1, rho_alt_2,
n1, distrIndexList, targetRhoError);
if(child1 == NULL)
return NULL;
rhoTreeNode* child2 = BuildRhoTreeBranch(noOfDistributionsTot, rho_alt_1, rho_alt_2,
n2, distrIndexList + n1, targetRhoError);
if(child2 == NULL)
return NULL;
newNode->child1 = child1;
newNode->child2 = child2;
newNode->distrIndex = -1;
return newNode;
} /* END */
static rhoTreeNode*
BuildRhoTree(int noOfDistributions,
DistributionSpecStruct* rho_alt_1,
ShellSpecStructWithExtent* rho_alt_2,
real targetRhoError)
{
rhoTreeNode* rootNode;
int i;
real targetError, arg, r1;
DistributionSpecStruct* distr;
if(rho_alt_1 != NULL)
{
/* compute extent for each distribution in list */
for(i = 0; i < noOfDistributions; i++)
{
distr = &rho_alt_1[i];
targetError = distr->coeff / 1e20;
arg = distr->coeff / targetError;
r1 = template_blas_log(arg);
if(r1 < 0) r1 *= -1;
distr->extent = template_blas_sqrt(r1 / distr->exponent);
} /* END FOR i */
}
/* set up initial index list: all distributions included */
std::vector<int> distrIndexList(noOfDistributions);
for(i = 0; i < noOfDistributions; i++)
distrIndexList[i] = i;
rootNode = BuildRhoTreeBranch(noOfDistributions, rho_alt_1, rho_alt_2,
noOfDistributions, &distrIndexList[0],
targetRhoError);
if(rootNode == NULL)
throw std::runtime_error("error in BuildRhoTreeBranch.");
return rootNode;
} /* END BuildRhoTree */
static void free_rho_tree_memory(rhoTreeNode* rootNode)
{
rhoTreeNode* child1;
rhoTreeNode* child2;
child1 = rootNode->child1;
child2 = rootNode->child2;
if(child1 != NULL)
free_rho_tree_memory(child1);
if(child2 != NULL)
free_rho_tree_memory(child2);
delete rootNode;
} /* END free_rho_tree_memory */
static int round_real(real x)
{
int x1, x2;
real err1, err2;
x1 = (int)x;
x2 = x1 + 1;
err1 = x - (real)x1;
err2 = (real)x2 - x;
if(err1 <= err2)
return x1;
else
return x2;
}
static void getSubBox(const BoxStruct & startBox, BoxStruct & subBox,
int Nx, int Ny, int Nz, int ix, int iy, int iz) {
subBox.min[0] = startBox.min[0] + (real)(ix + 0) * (startBox.max[0] - startBox.min[0]) / Nx;
subBox.max[0] = startBox.min[0] + (real)(ix + 1) * (startBox.max[0] - startBox.min[0]) / Nx;
subBox.min[1] = startBox.min[1] + (real)(iy + 0) * (startBox.max[1] - startBox.min[1]) / Ny;
subBox.max[1] = startBox.min[1] + (real)(iy + 1) * (startBox.max[1] - startBox.min[1]) / Ny;
subBox.min[2] = startBox.min[2] + (real)(iz + 0) * (startBox.max[2] - startBox.min[2]) / Nz;
subBox.max[2] = startBox.min[2] + (real)(iz + 1) * (startBox.max[2] - startBox.min[2]) / Nz;
}
typedef real coor3DPtr[3];
static void*
compute_grid_thread_func(void* arg)
{
try {
int maxNoOfPoints;
int noOfShells;
int noOfNonzeroBasisFuncs;
int currShellNo, prevShellNo, tempInt;
int writeResultsToFile;
int noOfWrittenBatches, noOfGridPoints;
BoxStruct startBox;
BoxStruct subBox;
DensitySpecStruct* density;
compute_grid_thread_func_struct* inputParams;
rhoTreeNode* rhoTreeRootNode;
rhoTreeNode* rhoTreeRootNodeShells;
int m, ii, jj;
int nFunctions, count, nPoints, nblocks, blockStarted;
int startShellNo, NthisWrite;
FILE* gridFile;
int jobCount, assignedJobNumber;
ShellSpecStruct* currShell;
/* get hold of input params */
inputParams = (compute_grid_thread_func_struct*)arg;
inputParams->resultCode = -1; // set to zero on success.
density = inputParams->density;
memcpy(&startBox, inputParams->startBox, sizeof(BoxStruct));
rhoTreeRootNode = inputParams->rhoTreeRootNode;
rhoTreeRootNodeShells = inputParams->rhoTreeRootNodeShells;
noOfShells = density->noOfShells;
int Nx = inputParams->Nx;
int Ny = inputParams->Ny;
int Nz = inputParams->Nz;
gridFile = inputParams->gridFile;
bool generateSparsePatternOnly = inputParams->generateSparsePatternOnly;
Dft::SparsePattern* sparsePattern = inputParams->sparsePattern;
compute_grid_for_box_params_struct paramsStruct(inputParams->bis);
std::vector<real> dmagao(density->nbast*DFT_MAX_BLLEN);
paramsStruct.dmagao = &dmagao[0];
writeResultsToFile = 1;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "thread %i entering compute_grid_thread_func..",
inputParams->threadNo);
/* allocate memory */
maxNoOfPoints = FILE_BATCH_N;
real (*coor)[3] = new real[maxNoOfPoints][3];
std::vector<real> weight(maxNoOfPoints);
std::vector<real> coorx(maxNoOfPoints);
std::vector<real> coory(maxNoOfPoints);
std::vector<real> coorz(maxNoOfPoints);
std::vector<int> nonZeroShellIndexList(noOfShells);
std::vector<int> nonZeroBasisFuncIndexList(density->nbast);
std::vector<real> workList(density->nbast * MAX_NO_OF_POINTS_PER_BATCH);
std::vector<DistributionSpecStruct> rhoForSubBox(inputParams->maxNoOfRelevantDistrsPerBox);
std::vector<int> tempList(inputParams->maxNoOfRelevantDistrsPerBox);
std::vector<int> listShlblocks(MAX_NO_OF_SHLBLOCKS * 2);
int (*listShlblocks_otherformat)[2];
listShlblocks_otherformat = new int[MAX_NO_OF_SHLBLOCKS][2];
/* get initial assignedJobNumber */
pthread_mutex_lock(inputParams->jobMutex);
assignedJobNumber = *inputParams->currJobNumber;
*inputParams->currJobNumber += N_BATCH_JOBS;
pthread_mutex_unlock(inputParams->jobMutex);
jobCount = 0;
noOfWrittenBatches = 0;
ComputeGridResultValuesStruct resultValues;
noOfGridPoints = 0;
for(int i = 0; i < Nx; i++) {
for(int j = 0; j < Ny; j++) {
for(int k = 0; k < Nz; k++) {
jobCount++;
if(jobCount >= (assignedJobNumber + N_BATCH_JOBS))
{
/* get new assignedJobNumber */
pthread_mutex_lock(inputParams->jobMutex);
assignedJobNumber = *inputParams->currJobNumber;
*inputParams->currJobNumber += N_BATCH_JOBS;
pthread_mutex_unlock(inputParams->jobMutex);
}
if(jobCount < assignedJobNumber)
continue;
if(assignedJobNumber > (Nx*Ny*Nz))
continue;
/* determine current sub-box */
getSubBox(startBox, subBox, Nx, Ny, Nz, i, j, k);
/* get list of non-zero shells for current sub-box */
int noOfNonzeroShells = get_rhotree_indexes_for_box(&nonZeroShellIndexList[0],
nonZeroShellIndexList.size(),
&rhoTreeRootNodeShells[0],
&subBox);
if(noOfNonzeroShells < 0)
throw std::runtime_error("error in get_distrs_for_box");
if(noOfNonzeroShells == 0)
continue;
/* sort list of non-zero shells (bubble sort, could be optimized) */
for(int kk = 0; kk < (noOfNonzeroShells - 1); kk++)
{
for(jj = 0; jj < (noOfNonzeroShells - 1 - kk); jj++)
{
if(nonZeroShellIndexList[jj] >
nonZeroShellIndexList[jj+1])
{
tempInt = nonZeroShellIndexList[jj];
nonZeroShellIndexList[jj] =
nonZeroShellIndexList[jj+1];
nonZeroShellIndexList[jj+1] = tempInt;
}
} /* END FOR jj */
} /* END FOR kk */
/* translate list of nonzero shells to list of */
/* nonzero contracted distributions */
noOfNonzeroBasisFuncs = 0;
for(int kk = 0; kk < noOfNonzeroShells; kk++)
{
currShell = &density->shellList[nonZeroShellIndexList[kk]].s;
nFunctions = 1 + 2 *
currShell->shellType;
for(ii = 0; ii < nFunctions; ii++)
{
nonZeroBasisFuncIndexList[noOfNonzeroBasisFuncs] =
currShell->startIndexInMatrix + ii;
noOfNonzeroBasisFuncs++;
} /* END FOR ii */
} /* END FOR kk */
if(noOfNonzeroBasisFuncs > density->nbast)
throw std::runtime_error("error: (noOfNonzeroBasisFuncs > nbast)");
/* make block-list of non-zero shells to write to file */
nblocks = 0;
blockStarted = 0;
startShellNo = -1;
prevShellNo = -1;
for(int kk = 0; kk < noOfNonzeroShells; kk++)
{
currShellNo = nonZeroShellIndexList[kk];
if(blockStarted == 0)
{
blockStarted = 1;
startShellNo = currShellNo;
}
else
{
if(currShellNo != (prevShellNo + 1))
{
/* register previous block */
listShlblocks[nblocks*2] = startShellNo; // + 1 here??
listShlblocks[nblocks*2+1] = prevShellNo+1; // + 1 here??
nblocks++;
startShellNo = currShellNo;
}
}
prevShellNo = currShellNo;
} /* END FOR kk */
if(blockStarted == 1)
{
/* register previous block */
listShlblocks[nblocks*2] = startShellNo; // + 1 here??
listShlblocks[nblocks*2+1] = prevShellNo+1; // + 1 here??
nblocks++;
}
for(int kk = 0; kk < nblocks; kk++) {
listShlblocks_otherformat[kk][0] = listShlblocks[kk*2+0];
listShlblocks_otherformat[kk][1] = listShlblocks[kk*2+1];
}
nPoints = 0;
if(!generateSparsePatternOnly) {
/* get list of relevant distributions for sub-box */
count = get_rhotree_indexes_for_box(&tempList[0], tempList.size(), rhoTreeRootNode, &subBox);
if(count < 0)
throw std::runtime_error("error in get_distrs_for_box");
if(count == 0)
continue;
assert(count <= inputParams->maxNoOfRelevantDistrsPerBox);
for(m = 0; m < count; m++)
memcpy(&rhoForSubBox[m],
&density->distrList[tempList[m]],
sizeof(DistributionSpecStruct));
real Iexact = 0;
for(int kk = 0; kk < count; kk++)
Iexact += compute_integral_over_box(&rhoForSubBox[kk], &subBox);
/* create grid for sub-box */
memcpy(¶msStruct.density,
density,
sizeof(DensitySpecStruct));
paramsStruct.density.noOfDistributions = count;
paramsStruct.density.distrList = &rhoForSubBox[0];
paramsStruct.gridGenerationParams = inputParams->gridGenerationParams;
paramsStruct.nonZeroBasisFuncIndexList = &nonZeroBasisFuncIndexList[0];
paramsStruct.noOfNonzeroBasisFuncs = noOfNonzeroBasisFuncs;
paramsStruct.nonZeroShellsIndexList = &nonZeroShellIndexList[0];
paramsStruct.noOfNonzeroShells = noOfNonzeroShells;
paramsStruct.nShlblocks = nblocks;
paramsStruct.listShlblocks_otherformat = listShlblocks_otherformat;
/* Create DFT integrator. */
int ndmat = 1;
paramsStruct.dftIntegrator = dft_integrator_bl_new(selected_func, ndmat,
DFT_MAX_BLLEN, false, inputParams->bis);
paramsStruct.dftIntegrator->shl_bl_cnt = nblocks;
for(int kk = 0; kk < nblocks; kk++)
for(int mm = 0; mm < 2; mm++)
paramsStruct.dftIntegrator->shlblocks[kk][mm] = listShlblocks_otherformat[kk][mm];
ergoShellsToOrbs(¶msStruct.dftIntegrator->shl_bl_cnt, paramsStruct.dftIntegrator->shlblocks,
paramsStruct.dftIntegrator->bas_bl_cnt, paramsStruct.dftIntegrator->basblocks,
inputParams->bis);
/* Setup local full density matrix for current box. */
int nnzbf = noOfNonzeroBasisFuncs;
paramsStruct.localFullDensityMatrix.resize(nnzbf*nnzbf);
for(int kk = 0; kk < nnzbf; kk++) {
int kkIndex = nonZeroBasisFuncIndexList[kk];
for(int mm = 0; mm < nnzbf; mm++) {
int mmIndex = nonZeroBasisFuncIndexList[mm];
real dmatElement;
dmatElement = paramsStruct.density.dmat->at(kkIndex, mmIndex);
paramsStruct.localFullDensityMatrix[kk*nnzbf+mm] = dmatElement;
}
}
nPoints = compute_grid_for_box(¶msStruct,
maxNoOfPoints,
&coor[0],
&weight[0],
&subBox,
Iexact,
&workList[0],
resultValues,
false);
if(nPoints < 0)
throw std::runtime_error("error in compute_grid_for_box");
dft_integrator_bl_free(paramsStruct.dftIntegrator);
if(nPoints == 0)
continue;
noOfGridPoints += nPoints;
} // end if (!generateSparsePatternOnly)
if(writeResultsToFile == 1)
{
/* set up separate x, y, z vectors for writing to file */
if(nPoints > maxNoOfPoints)
throw std::runtime_error("error in HiCu compute_grid_thread_func: (nPoints > maxNoOfPoints).");
for(int kk = 0; kk < nPoints; kk++)
{
coorx[kk] = coor[kk][0];
coory[kk] = coor[kk][1];
coorz[kk] = coor[kk][2];
}
/* write grid points to file */
int nPointsLeft = nPoints;
pthread_mutex_lock(inputParams->fileMutex);
while(nPointsLeft > 0)
{
if(nPointsLeft <= MAX_NO_OF_POINTS_PER_WRITE)
NthisWrite = nPointsLeft;
else
NthisWrite = MAX_NO_OF_POINTS_PER_WRITE;
fwrite(&NthisWrite, sizeof(int), 1, gridFile);
fwrite(&nblocks, sizeof(int), 1, gridFile);
fwrite(&listShlblocks[0], sizeof(int), 2*nblocks, gridFile);
fwrite(&(coor[nPoints-nPointsLeft][0]),
sizeof(real), 3*NthisWrite, gridFile);
fwrite(&weight[nPoints-nPointsLeft],
sizeof(real), NthisWrite, gridFile);
nPointsLeft -= NthisWrite;
noOfWrittenBatches++;
} /* END WHILE points left */
/* Update counters for plot. Note that this is also protected by "fileMutex" being locked. */
tripleVectorOfInt* counterArrForPlot = inputParams->counterArrForPlot;
for(int kk = 0; kk < nPoints; kk++) {
int idxList[3];
for(int coordIdx = 0; coordIdx < 3; coordIdx++) {
int idx = (int)(HICU_GRID_PLOT_RESOLUTION *
((coor[kk][coordIdx] - startBox.min[coordIdx]) / (startBox.max[coordIdx] - startBox.min[coordIdx])));
if(idx < 0 || idx >= HICU_GRID_PLOT_RESOLUTION)
throw std::runtime_error("error in HiCu compute_grid_thread_func: trouble getting indexes for plot counters.");
idxList[coordIdx] = idx;
}
int ix = idxList[0];
int iy = idxList[1];
int iz = idxList[2];
(*counterArrForPlot)[ix][iy][iz] ++;
}
pthread_mutex_unlock(inputParams->fileMutex);
} /* end if writeResultsToFile */
/* Add to sparsePattern if needed. */
if(sparsePattern) {
pthread_mutex_lock(inputParams->fileMutex);
sparsePattern->add(nblocks, listShlblocks_otherformat);
pthread_mutex_unlock(inputParams->fileMutex);
}
} /* END FOR k */
} /* END FOR j */
} /* END FOR i */
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "thread %i loops done, freeing memory..",
inputParams->threadNo);
/* free memory */
delete [] listShlblocks_otherformat;
delete [] coor;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "thread %i mem freed OK, setting result params..",
inputParams->threadNo);
/* report results through input structure */
inputParams->noOfPoints = noOfGridPoints;
inputParams->noOfWrittenBatches = noOfWrittenBatches;
inputParams->resultValues = resultValues;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "thread %i exiting compute_grid_thread_func",
inputParams->threadNo);
inputParams->resultCode = 0; // set to zero to indicate success.
}
catch ( std::exception & e ) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "HiCu Error: Exception caught in compute_grid_thread_func.");
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "what(): %s", e.what());
return NULL;
}
catch (...) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "HiCu Error: Exception caught in compute_grid_thread_func.");
return NULL;
}
return NULL;
} /* END compute_grid_thread_func */
static int compute_grid(
const BasisInfoStruct& bis,
DensitySpecStruct* density,
const GridGenerationParamsStruct & gridGenerationParams,
real boxdist,
real startBoxSizeDebug,
const char* gridFileName,
int noOfThreads,
bool generateSparsePatternOnly,
Dft::SparsePattern* sparsePattern
)
{
BoxStruct startBox;
BoxStruct tempBox;
rhoTreeNode* rhoTreeRootNode;
rhoTreeNode* rhoTreeRootNodeShells;
real Iexact, absRelError;
int Nxyz[3]; /* Nx Ny Nz */
int IexactInteger;
int noOfDistributions;
int currJobNumber, noOfShells;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "entering compute_grid..");
noOfShells = density->noOfShells;
if(noOfShells <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in compute_grid: (noOfShells <= 0).");
return -1;
}
noOfDistributions = density->noOfDistributions;
if(noOfDistributions < 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in compute_grid: (noOfDistributions < 0).");
return -1;
}
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Entering compute_grid, noOfDistributions = %i, "
"maxerrorPerBox = %9.3g, targetRhoError = %9.3g",
noOfDistributions, (double)gridGenerationParams.maxerrorPerBox, (double)gridGenerationParams.targetRhoError);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "nbast = %i", density->nbast);
/* set up starting box */
get_shell_box(&startBox, &density->shellList[0]);
for(int i = 1; i < noOfShells; i++) {
get_shell_box(&tempBox, &density->shellList[i]);
for(int j = 0; j < NO_OF_DIMENSIONS; j++) {
if(tempBox.min[j] < startBox.min[j])
startBox.min[j] = tempBox.min[j];
if(tempBox.max[j] > startBox.max[j])
startBox.max[j] = tempBox.max[j];
} /* END FOR j */
} /* END FOR i */
if(startBoxSizeDebug > 0) {
for(int j = 0; j < NO_OF_DIMENSIONS; j++) {
startBox.min[j] = 100*UNIT_one_Angstrom - startBoxSizeDebug;
startBox.max[j] = 100*UNIT_one_Angstrom + startBoxSizeDebug;
}
}
if(!generateSparsePatternOnly) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid starting box:");
print_box(&startBox);
}
Iexact = 0;
if(!generateSparsePatternOnly) {
for(int i = 0; i < noOfDistributions; i++)
Iexact += compute_integral_over_box(&density->distrList[i], &startBox);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Analytical integral over starting box: %.22f", (double)Iexact);
IexactInteger = round_real(Iexact);
absRelError = template_blas_fabs((double)IexactInteger - Iexact) / (double)IexactInteger;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Assuming that the correct value is %i, "
"the relative error is %9.3g", IexactInteger, (double)absRelError);
}
rhoTreeRootNode = NULL;
if(!generateSparsePatternOnly) {
Util::TimeMeter tmRhoTree;
rhoTreeRootNode = BuildRhoTree(noOfDistributions,
density->distrList,
NULL,
gridGenerationParams.targetRhoError);
if(rhoTreeRootNode == NULL)
{
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in BuildRhoTree\n");
return -1;
}
tmRhoTree.print(LOG_AREA_DFT, "BuildRhoTree for distrs");
}
Util::TimeMeter tmRhoTreeForShells;
rhoTreeRootNodeShells = BuildRhoTree(noOfShells,
NULL,
density->shellList,
gridGenerationParams.targetRhoError);
if(rhoTreeRootNodeShells == NULL)
{
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in BuildRhoTree.");
return -1;
}
tmRhoTreeForShells.print(LOG_AREA_DFT, "BuildRhoTree for shells");
/* compute Nx Ny Nz */
for(int i = 0; i < 3; i++)
Nxyz[i] = 1 + (int)((startBox.max[i] - startBox.min[i]) / boxdist);
int Nx = Nxyz[0];
int Ny = Nxyz[1];
int Nz = Nxyz[2];
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "boxdist = %f, Nx = %i, Ny = %i, Nz = %i, Ntot = %i",
(double)boxdist, Nx, Ny, Nz, Nx*Ny*Nz);
/* Now go through all boxes to find the largest number of relevant
distributions for any single box, since this number is needed to
allocate work space later. */
int maxNoOfRelevantDistrsPerBox = 0;
if(!generateSparsePatternOnly) {
for(int i = 0; i < Nx; i++)
for(int j = 0; j < Ny; j++)
for(int k = 0; k < Nz; k++) {
BoxStruct subBox;
getSubBox(startBox, subBox, Nx, Ny, Nz, i, j, k);
int count = get_rhotree_indexes_for_box(NULL, 0, rhoTreeRootNode, &subBox);
if(count > maxNoOfRelevantDistrsPerBox)
maxNoOfRelevantDistrsPerBox = count;
}
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "maxNoOfRelevantDistrsPerBox = %9d", maxNoOfRelevantDistrsPerBox);
}
FILE* gridFile = NULL;
if(!generateSparsePatternOnly) {
/* create grid file */
gridFile = fopen(gridFileName, "wb");
if(gridFile == NULL)
{
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error opening grid file '%s' for writing", gridFileName);
return -1;
}
}
std::vector< std::vector< std::vector<int> > > counterArrForPlot(HICU_GRID_PLOT_RESOLUTION);
for(int i = 0; i < HICU_GRID_PLOT_RESOLUTION; i++) {
counterArrForPlot[i].resize(HICU_GRID_PLOT_RESOLUTION);
for(int j = 0; j < HICU_GRID_PLOT_RESOLUTION; j++) {
counterArrForPlot[i][j].resize(HICU_GRID_PLOT_RESOLUTION);
for(int k = 0; k < HICU_GRID_PLOT_RESOLUTION; k++)
counterArrForPlot[i][j][k] = 0;
}
}
/* up to this point there is no parallellization */
/* this is where we start to think about threading */
pthread_mutex_t fileMutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t jobMutex = PTHREAD_MUTEX_INITIALIZER;
std::vector<compute_grid_thread_func_struct*> threadParamsList(noOfThreads);
for(int i = 0; i < noOfThreads; i++)
threadParamsList[i] = new compute_grid_thread_func_struct(bis);
currJobNumber = 1;
for(int i = 0; i < noOfThreads; i++) {
threadParamsList[i]->density = density;
threadParamsList[i]->rhoTreeRootNode = rhoTreeRootNode;
threadParamsList[i]->rhoTreeRootNodeShells = rhoTreeRootNodeShells;
threadParamsList[i]->gridGenerationParams = gridGenerationParams;
threadParamsList[i]->gridFile = gridFile;
threadParamsList[i]->startBox = &startBox;
threadParamsList[i]->Nx = Nx;
threadParamsList[i]->Ny = Ny;
threadParamsList[i]->Nz = Nz;
threadParamsList[i]->maxNoOfRelevantDistrsPerBox = maxNoOfRelevantDistrsPerBox;
threadParamsList[i]->fileMutex = &fileMutex;
threadParamsList[i]->jobMutex = &jobMutex;
threadParamsList[i]->currJobNumber = &currJobNumber;
threadParamsList[i]->noOfPoints = -1;
threadParamsList[i]->noOfWrittenBatches = 0;
threadParamsList[i]->generateSparsePatternOnly = generateSparsePatternOnly;
threadParamsList[i]->sparsePattern = sparsePattern;
threadParamsList[i]->counterArrForPlot = &counterArrForPlot;
threadParamsList[i]->threadNo = i;
} /* END FOR i */
if(noOfThreads == 1) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid: (noOfThreads == 1), no threads created.");
compute_grid_thread_func(threadParamsList[0]);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Single call to compute_grid_thread_func done.");
}
else {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Starting %i threads.", noOfThreads);
/* start threads */
for(int i = 0; i < noOfThreads; i++) {
if(pthread_create(&threadParamsList[i]->thread,
NULL,
compute_grid_thread_func,
threadParamsList[i]) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in pthread_create for thread %i", i);
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "waiting for already created threads..");
for(int j = 0; j < i; j++) {
if(pthread_join(threadParamsList[j]->thread, NULL) != 0)
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in pthread_join for thread %i", j);
} /* END FOR j */
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "all threads finished, returning error code");
return -1;
}
} /* END FOR i */
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "%i threads started OK.", noOfThreads);
/* wait for threads to finish */
for(int i = 0; i < noOfThreads; i++) {
if(pthread_join(threadParamsList[i]->thread, NULL) != 0)
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in pthread_join for thread %i", i);
} /* END FOR i */
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "all %i threads have finished:", noOfThreads);
for(int i = 0; i < noOfThreads; i++)
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "thread %2i noOfWrittenBatches = %6i",
i, threadParamsList[i]->noOfWrittenBatches);
} // end if using threads
/* now all threads have finished, check for errors */
for(int i = 0; i < noOfThreads; i++) {
if(threadParamsList[i]->noOfPoints < 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in compute_grid_thread_func"
" for thread %i\n", i);
return -1;
}
} /* END FOR i */
int noOfGridPoints = 0;
int noOfWrittenBatches = 0;
real totalIntegralResultNumerical = 0;
real totalIntegralResultAnalytical = 0;
real totalIntegralResultEnergy = 0;
real estimatedIntegralErrorDensity = 0;
real estimatedIntegralErrorEnergy = 0;
for(int i = 0; i < noOfThreads; i++)
{
noOfGridPoints += threadParamsList[i]->noOfPoints;
noOfWrittenBatches += threadParamsList[i]->noOfWrittenBatches;
totalIntegralResultNumerical += threadParamsList[i]->resultValues.totalIntegralResultNumerical;
totalIntegralResultAnalytical += threadParamsList[i]->resultValues.totalIntegralResultAnalytical;
totalIntegralResultEnergy += threadParamsList[i]->resultValues.totalIntegralResultEnergy;
estimatedIntegralErrorDensity += threadParamsList[i]->resultValues.estimatedIntegralErrorDensity;
estimatedIntegralErrorEnergy += threadParamsList[i]->resultValues.estimatedIntegralErrorEnergy;
} /* END FOR i */
if(gridFile)
fclose(gridFile);
if(!generateSparsePatternOnly) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "noOfWrittenBatches = %i", noOfWrittenBatches);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid ending OK, noOfGridPoints = %i",
noOfGridPoints);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid maxerrorPerBox param = %25.15f = %9.4g",
(double)gridGenerationParams.maxerrorPerBox, (double)gridGenerationParams.maxerrorPerBox);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid totalIntegralResultAnalytical = %25.15f",
(double)totalIntegralResultAnalytical);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid totalIntegralResultNumerical = %25.15f",
(double)totalIntegralResultNumerical);
ergo_real absDiff = template_blas_fabs(totalIntegralResultAnalytical - totalIntegralResultNumerical);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid numer/analy integral abs diff = %25.15f = %9.4g",
(double)absDiff, (double)absDiff);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid totalIntegralResultEnergy = %25.15f",
(double)totalIntegralResultEnergy);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid estimatedIntegralErrorDensity = %25.15f = %9.4g",
(double)estimatedIntegralErrorDensity, (double)estimatedIntegralErrorDensity);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "compute_grid estimatedIntegralErrorEnergy = %25.15f = %9.4g",
(double)estimatedIntegralErrorEnergy, (double)estimatedIntegralErrorEnergy);
#if 0
// Create m-file for plot.
FILE* mfile = fopen("grid_plot_file_3d.m", "wt");
fprintf(mfile, "M = [\n");
for(int i = 0; i < HICU_GRID_PLOT_RESOLUTION; i++)
for(int j = 0; j < HICU_GRID_PLOT_RESOLUTION; j++)
for(int k = 0; k < HICU_GRID_PLOT_RESOLUTION; k++) {
double x = startBox.min[0] + (double)i * (startBox.max[0] - startBox.min[0]) / HICU_GRID_PLOT_RESOLUTION;
double y = startBox.min[1] + (double)j * (startBox.max[1] - startBox.min[1]) / HICU_GRID_PLOT_RESOLUTION;
double z = startBox.min[2] + (double)k * (startBox.max[2] - startBox.min[2]) / HICU_GRID_PLOT_RESOLUTION;
fprintf(mfile, "%15.5f %15.5f %15.5f %9d\n", x, y, z, counterArrForPlot[i][j][k]);
}
fprintf(mfile, "];\n");
fclose(mfile);
mfile = fopen("grid_plot_file_2d_z.m", "wt");
fprintf(mfile, "M = [\n");
for(int i = 0; i < HICU_GRID_PLOT_RESOLUTION; i++) {
for(int j = 0; j < HICU_GRID_PLOT_RESOLUTION; j++) {
int count = 0;
for(int k = 0; k < HICU_GRID_PLOT_RESOLUTION; k++)
count += counterArrForPlot[i][j][k];
fprintf(mfile, " %9d", count);
}
fprintf(mfile, "\n");
}
fprintf(mfile, "];\n");
fclose(mfile);
#endif
}
if(!generateSparsePatternOnly)
free_rho_tree_memory(rhoTreeRootNode);
free_rho_tree_memory(rhoTreeRootNodeShells);
for(int i = 0; i < noOfThreads; i++)
delete threadParamsList[i];
return noOfGridPoints;
} /* END compute_grid */
static int
do_merge_sort_distrs(int n,
DistributionSpecStruct* list,
DistributionSpecStruct* workList)
{
/* merge sort: */
/* first sort the first half, */
/* then sort the second half, */
/* then merge results to form final sorted list. */
int n1, n2, nn, decision, i1, i2, i;
DistributionSpecStruct* d1;
DistributionSpecStruct* d2;
if(n < 1) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in do_merge_sort_distrs: (n < 1).");
return -1;
}
if(n == 1)
return 0;
n1 = n / 2;
n2 = n - n1;
/* sort first half */
if(do_merge_sort_distrs(n1, list, workList) != 0)
return -1;
/* sort second half */
if(do_merge_sort_distrs(n2, &list[n1], workList) != 0)
return -1;
/* merge results */
nn = 0;
i1 = 0;
i2 = 0;
while(nn < n)
{
if((i1 < n1) && (i2 < n2))
{
/* compare */
d1 = &list[i1];
d2 = &list[n1+i2];
decision = 0;
for(i = 0; i < 3; i++)
{
if(decision == 0)
{
if(d1->monomialInts[i] != d2->monomialInts[i])
{
if(d1->monomialInts[i] > d2->monomialInts[i])
decision = 1;
else
decision = 2;
}
} /* END IF (decision == 0) */
} /* END FOR i */
if(decision == 0)
{
/* check exponents */
if(d1->exponent > d2->exponent)
decision = 1;
else
decision = 2;
}
}
else
{
if(i1 == n1)
decision = 2;
else
decision = 1;
}
if(decision <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in do_merge_sort_distrs: (decision <= 0).");
return -1;
}
if(decision == 1) {
memcpy(&workList[nn], &list[i1], sizeof(DistributionSpecStruct));
i1++;
}
else {
memcpy(&workList[nn], &list[n1+i2], sizeof(DistributionSpecStruct));
i2++;
}
nn++;
} /* END WHILE (nn < n) */
if(i1 != n1) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in do_merge_sort_distrs: (i1 != n1).");
return -1;
}
if(i2 != n2) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in do_merge_sort_distrs: (i2 != n2).");
return -1;
}
if(nn != n) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error in do_merge_sort_distrs: (nn != n).");
return -1;
}
memcpy(list, workList, n * sizeof(DistributionSpecStruct));
return 0;
} /* END do_merge_sort_distrs */
static int
compute_extent_for_shells(ShellSpecStructWithExtent* shellList,
const BasisInfoStruct& bis,
real targetRhoError) {
/* We do this using existing function for getting the extent of all basis functions. */
std::vector<real> basisFuncExtentList(bis.noOfBasisFuncs);
ergo_real maxAbsDensityMatrixElement = 1.0; /* FIXME: use correct value here. */
real maxAbsValue = targetRhoError / (get_max_basis_func_abs_value(bis) * maxAbsDensityMatrixElement);
get_basis_func_extent_list(bis, &basisFuncExtentList[0], maxAbsValue);
for(int i = 0; i < bis.noOfShells; i++) {
ShellSpecStructWithExtent* currShell = &shellList[i];
real largestExtent = 0;
int startIdx = currShell->s.startIndexInMatrix;
for(int j = 0; j < currShell->s.noOfBasisFuncs; j++) {
ergo_real currBasisFuncExtent = basisFuncExtentList[startIdx+j];
if(currBasisFuncExtent > largestExtent)
largestExtent = currBasisFuncExtent;
}
currShell->extent = largestExtent;
}
return 0;
}
static int get_product_distrs(const BasisInfoStruct& bis,
const Dft::Matrix& dmat,
real targetRhoError,
DistributionSpecStruct* rho, /* may be NULL. */
int maxCount /* only used if rho != NULL. */
) {
Util::TimeMeter tm;
const int MAX_DISTRS_IN_TEMP_LIST = 4444;
int nBasisFuncs = bis.noOfBasisFuncs;
std::vector<ergo_real> basisFuncExtentList(nBasisFuncs);
ergo_real maxAbsDensityMatrixElement = 1.0; /* FIXME: use correct value here. */
real maxAbsValue = targetRhoError / (get_max_basis_func_abs_value(bis) * maxAbsDensityMatrixElement);
get_basis_func_extent_list(bis, &basisFuncExtentList[0], maxAbsValue);
ergo_real maxExtent = 0;
for(int i = 0; i < nBasisFuncs; i++) {
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
// Create box system.
std::vector<box_item_struct> itemList(nBasisFuncs);
for(int i = 0; i < nBasisFuncs; i++) {
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = bis.basisFuncList[i].centerCoords[j];
itemList[i].originalIndex = i;
}
ergo_real toplevelBoxSize = 7.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(&itemList[0],
nBasisFuncs,
toplevelBoxSize) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in get_product_distrs: error creating box system.");
return -1;
}
std::vector<int> orgIndexList(nBasisFuncs);
int nn = 0;
for(int i = 0; i < nBasisFuncs; i++) {
// Now, instead of looping again over all nBasisFuncs basis
// functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = bis.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(&itemList[0], coords, maxDistance, &orgIndexList[0]);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++) {
int j = orgIndexList[jRelevant];
DistributionSpecStruct tempList[MAX_DISTRS_IN_TEMP_LIST];
int nPrimitives;
/* the matrix M is symmetric: include diagonal terms once, */
/* and include upper off-diagonal terms multiplied by 2 */
int symmetryFactor;
if(i == j)
symmetryFactor = 1;
else
symmetryFactor = 2;
if(i > j)
continue;
nPrimitives =
get_product_simple_primitives(bis, i,
bis, j,
tempList,
MAX_DISTRS_IN_TEMP_LIST,
DISTR_PRODUCT_THRESHOLD);
if(nPrimitives < 0)
throw std::runtime_error("error in get_product_simple_primitives");
for(int k = 0; k < nPrimitives; k++) {
DistributionSpecStruct* currDistr = &tempList[k];
real Mij;
Mij = dmat.at(i, j);
real newCoeff = currDistr->coeff * Mij * symmetryFactor;
if(template_blas_fabs(newCoeff) > DISTR_COEFF_CUTOFF_VALUE) {
/* add to final list */
if(rho) {
if(nn >= maxCount)
throw std::runtime_error("error: (nn >= maxCount)");
memcpy(&rho[nn], currDistr,
sizeof(DistributionSpecStruct));
rho[nn].coeff = newCoeff;
}
nn++;
}
}
}
}
tm.print(LOG_AREA_DFT, "get_product_distrs");
return nn;
}
static void
get_shell_list_with_extents(const BasisInfoStruct& bis,
int maxCountShellList,
ShellSpecStructWithExtent* shellList,
real targetRhoError) {
if(maxCountShellList < bis.noOfShells)
throw std::runtime_error("Error: (maxCountShellList < bis.noOfShells)");
for(int i = 0; i < bis.noOfShells; i++) {
shellList[i].s = bis.shellList[i];
shellList[i].extent = 0; // to be computed later.
}
if(compute_extent_for_shells(shellList, bis, targetRhoError) != 0)
throw std::runtime_error("Error in compute_extent_for_shells.");
}
static int
get_density(const BasisInfoStruct& bis,
DistributionSpecStruct* rho,
int maxCountRho,
real targetRhoError,
int nbast,
const Dft::Matrix& dmat,
BasisFuncStruct* basisFuncList)
{
Util::TimeMeter tm;
Util::TimeMeter tmFirstPart;
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "entering function get_density, targetRhoError = %22.15f",
(double)targetRhoError);
int nn = get_product_distrs(bis, dmat, targetRhoError, rho, maxCountRho);
if(nn != maxCountRho)
throw std::runtime_error("Error in get_density: (nn != maxCountRho).");
memcpy(basisFuncList, bis.basisFuncList,
bis.noOfBasisFuncs * sizeof(BasisFuncStruct));
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "loop ended OK; list 'rho' created, nn = %i", nn);
/* Now all distributions are stored in the list 'rho'. */
/* The number of entries in the list is nn. */
/* It could happen that all entries are not unique. */
/* We want to join distributions that have the same center */
/* and the same exponent. */
/* To do this, start with sorting the list by nx, ny, nz, exponent. */
std::vector<DistributionSpecStruct> workList(nn);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "calling do_merge_sort_distrs, nn = %i", nn);
if(do_merge_sort_distrs(nn, &rho[0], &workList[0]) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in do_merge_sort_distrs");
return -1;
}
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "do_merge_sort_distrs returned OK");
/* check that list is sorted */
for(int i = 0; i < (nn-1); i++) {
if(rho[i].exponent < rho[i+1].exponent) {
int sameYesNo = 1;
for(int j = 0; j < 3; j++) {
if(rho[i].monomialInts[j] != rho[i+1].monomialInts[j])
sameYesNo = 0;
} /* END FOR j */
if(sameYesNo == 1) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error: distr list NOT properly sorted.");
return -1;
}
}
} /* END FOR i */
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "sort checked OK");
tmFirstPart.print(LOG_AREA_DFT, "get_density first part");
std::vector<int> markList(nn);
for(int i = 0; i < nn; i++)
markList[i] = 0;
/* Create box system to help finding distrs that have centers that
are close to eachother in space. */
std::vector<box_item_struct> itemList(nn);
for(int i = 0; i < nn; i++) {
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = rho[i].centerCoords[j];
itemList[i].originalIndex = i;
}
real toplevelBoxSize = 4.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(&itemList[0],
nn,
toplevelBoxSize) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "error in get_product_distrs: error creating box system.");
return -1;
}
std::vector<int> orgIndexList(nn);
/* now go through sorted list, joining distributions where possible */
int icurr = 0;
int count = 0;
int firstIndex = 0;
while(icurr < nn) {
/* check if this entry has the same nx ny nz as current 'firstIndex' */
int sameYesNo = 1;
for(int j = 0; j < 3; j++) {
if(rho[icurr].monomialInts[j] != rho[firstIndex].monomialInts[j])
sameYesNo = 0;
} /* END FOR j */
/* check exponent */
real absdiff = template_blas_fabs(rho[icurr].exponent - rho[firstIndex].exponent);
if(absdiff > EXPONENT_DIFF_LIMIT)
sameYesNo = 0;
if(sameYesNo == 0) {
/* Now take care of all distrs from firstIndex to icurr-1. We
know that all of them have identical monomialInts and
exponents. */
for(int j = firstIndex; j < icurr; j++) {
if(markList[j] == 0) {
markList[j] = 1;
/* join distrs that have centers within */
/* DISTR_CENTER_DIST_LIMIT of this one */
ergo_real maxDistance = DISTR_CENTER_DIST_LIMIT;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = rho[j].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(&itemList[0], coords, maxDistance, &orgIndexList[0]);
real coeffSum = rho[j].coeff;
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++) {
if(orgIndexList[jRelevant] >= j+1 && orgIndexList[jRelevant] < icurr) {
int k = orgIndexList[jRelevant];
// for(int k = j+1; k < icurr; k++) {
int withinLimit = 1;
for(int kk = 0; kk < 3; kk++) {
real absdiff = template_blas_fabs(rho[j].centerCoords[kk] -
rho[k].centerCoords[kk]);
if(absdiff > DISTR_CENTER_DIST_LIMIT)
withinLimit = 0;
} /* END FOR kk */
if(withinLimit == 1) {
coeffSum += rho[k].coeff;
markList[k] = 1;
}
} /* end if index within range. */
} /* end for jRelevant */
memcpy(&workList[count],
&rho[j],
sizeof(DistributionSpecStruct));
workList[count].coeff = coeffSum;
count++;
} /* END IF (markList[j] == 0) */
} /* END FOR j */
firstIndex = icurr;
} /* end if (sameYesNo == 0) */
else {
/* Do nothing here. */
}
icurr++;
} /* END WHILE (icurr < nn) */
/* take care of last part */
for(int j = firstIndex; j < nn; j++) {
if(markList[j] == 0) {
markList[j] = 1;
/* join distrs that have centers within */
/* DISTR_CENTER_DIST_LIMIT of this one */
real coeffSum = rho[j].coeff;
for(int k = j+1; k < nn; k++) {
int withinLimit = 1;
for(int kk = 0; kk < 3; kk++) {
real absdiff = template_blas_fabs(rho[j].centerCoords[kk] -
rho[k].centerCoords[kk]);
if(absdiff > DISTR_CENTER_DIST_LIMIT)
withinLimit = 0;
} /* END FOR kk */
if(withinLimit == 1) {
coeffSum += rho[k].coeff;
markList[k] = 1;
}
} /* END FOR k */
memcpy(&workList[count], &rho[j], sizeof(DistributionSpecStruct));
workList[count].coeff = coeffSum;
count++;
} /* END IF (markList[j] == 0) */
} /* END FOR j */
for(int j = 0; j < nn; j++) {
if(markList[j] != 1) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT, "Error: (markList[%i] != 1).", j);
return -1;
}
} /* END FOR j */
/* now move results back to list 'rho', */
/* skipping those that have too small coeff */
int resultCount = 0;
for(int i = 0; i < count; i++) {
real sqrtValue = template_blas_sqrt(pi / workList[i].exponent);
real absvalue = workList[i].coeff * sqrtValue * sqrtValue * sqrtValue;
if(absvalue < 0) absvalue *= -1;
if(absvalue > DISTR_COEFF_CUTOFF_VALUE) {
memcpy(&rho[resultCount], &workList[i], sizeof(DistributionSpecStruct));
resultCount++;
}
} /* END FOR i */
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "nn = %9i", nn);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "count = %9i", count);
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "resultCount = %9i", resultCount);
tm.print(LOG_AREA_DFT, "get_density");
return resultCount;
} /* end get_density */
int hicu_grid_generate(const char* grid_file_name,
const BasisInfoStruct& bis,
ergo_real maxError,
ergo_real boxSize,
ergo_real startBoxSizeDebug,
int use_error_per_volume,
int do_double_checking,
int compare_to_refined,
int use_energy_criterion,
int use_energy_criterion_only,
int do_variation_checking,
const Dft::Matrix* dmat,
Dft::SparsePattern* sparsePattern,
int nThreads,
bool generateSparsePatternOnly) {
/* Use mutex lock to be sure only one thread at a time executes this
call. */
pthread_mutex_lock(&global_main_hicu_mutex);
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate start");
Util::TimeMeter tm;
DensitySpecStruct density;
int nGridPoints = -1;
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"hicu_grid_generate checking what kind of density matrix is given.");
int nbast = bis.noOfBasisFuncs;
if(dmat->isSparse())
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"hicu_grid_generate using sparse dmat.");
else {
/* check dmat */
real maxabs = 0;
for(int i = 0; i < nbast; i++) {
for(int j = 0; j < nbast; j++) {
real temp = template_blas_fabs(dmat->at(i,j));
if(temp > maxabs)
maxabs = temp;
}
}
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"hicu_grid_generate checking dmat: maxabs = %22.15f",
(double)maxabs);
}
int noOfShells = bis.noOfShells;
ergo_real targetRhoError = maxError * TARGET_RHO_ERROR_FACTOR;
std::vector<ShellSpecStructWithExtent> shellList(noOfShells);
get_shell_list_with_extents(bis, noOfShells, &shellList[0], targetRhoError);
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate after getting shellList");
std::vector<BasisFuncStruct> basisFuncList(nbast);
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate after allocating basisFuncList");
/* Call get_product_distrs here to get number of distrs to allocate. */
int noOfDistributions1 = 0;
if(!generateSparsePatternOnly) {
noOfDistributions1 = get_product_distrs(bis, *dmat, targetRhoError,
NULL, 0);
if(noOfDistributions1 <= 0)
throw std::runtime_error("Error in hicu_grid_generate: (noOfDistributions1 <= 0).");
}
std::vector<DistributionSpecStruct> rho(noOfDistributions1);
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate after allocating rho");
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "Calling get_density().");
int noOfDistributions = get_density(bis,
&rho[0],
noOfDistributions1,
targetRhoError,
nbast,
*dmat,
&basisFuncList[0]);
if(noOfDistributions < 0 || noOfDistributions > noOfDistributions1)
throw std::runtime_error("error in get_density! "
"(noOfDistributions < 0 || noOfDistributions > noOfDistributions1).");
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate after get_density");
density.noOfShells = noOfShells;
density.shellList = &shellList[0];
density.nbast = nbast;
density.dmat = dmat;
density.basisFuncList = &basisFuncList[0];
density.noOfDistributions = noOfDistributions;
density.distrList = &rho[0];
GridGenerationParamsStruct gridGenerationParams;
gridGenerationParams.maxerrorPerBox = maxError;
gridGenerationParams.targetRhoError = targetRhoError;
gridGenerationParams.doDoubleChecking = do_double_checking;
gridGenerationParams.compareToRefined = compare_to_refined;
gridGenerationParams.useEnergyCriterion = use_energy_criterion;
gridGenerationParams.useEnergyCriterionOnly = use_energy_criterion_only;
gridGenerationParams.useErrorPerVolume = use_error_per_volume;
gridGenerationParams.doVariationChecking = do_variation_checking;
/* get grid */
nGridPoints = compute_grid(bis,
&density,
gridGenerationParams,
boxSize,
startBoxSizeDebug,
grid_file_name,
nThreads,
generateSparsePatternOnly,
sparsePattern);
if(nGridPoints < 0)
throw std::runtime_error("Error in compute_grid.");
do_output(LOG_CAT_INFO, LOG_AREA_DFT, "HiCu grid generated OK, nGridPoints = %9d", nGridPoints);
output_current_memory_usage(LOG_AREA_DFT, "hicu_grid_generate end");
tm.print(LOG_AREA_DFT, __func__);
pthread_mutex_unlock(&global_main_hicu_mutex);
return nGridPoints;
}
void
grid_generate_sparse_pattern(const BasisInfoStruct& bis,
ergo_real maxError,
ergo_real boxSize,
ergo_real startBoxSizeDebug,
Dft::SparsePattern& sparsePattern) {
/* Use mutex lock to be sure only one thread at a time executes this
call. */
pthread_mutex_lock(&global_main_hicu_mutex);
output_current_memory_usage(LOG_AREA_DFT, "grid_generate_sparse_pattern start");
Util::TimeMeter tm;
DensitySpecStruct density;
int nbast = bis.noOfBasisFuncs;
int noOfShells = bis.noOfShells;
ergo_real targetRhoError = maxError * TARGET_RHO_ERROR_FACTOR;
std::vector<ShellSpecStructWithExtent> shellList(noOfShells);
get_shell_list_with_extents(bis, noOfShells, &shellList[0], targetRhoError);
density.noOfShells = noOfShells;
density.shellList = &shellList[0];
density.nbast = nbast;
density.dmat = NULL;
density.basisFuncList = NULL;
density.noOfDistributions = 0;
density.distrList = NULL;
GridGenerationParamsStruct gridGenerationParams;
gridGenerationParams.maxerrorPerBox = maxError;
gridGenerationParams.targetRhoError = targetRhoError;
/* get grid */
int nGridPoints = compute_grid(bis,
&density,
gridGenerationParams,
boxSize,
startBoxSizeDebug,
NULL,
1,
true,
&sparsePattern);
if(nGridPoints < 0)
throw std::runtime_error("Error in compute_grid.");
output_current_memory_usage(LOG_AREA_DFT, "grid_generate_sparse_pattern end");
tm.print(LOG_AREA_DFT, __func__);
pthread_mutex_unlock(&global_main_hicu_mutex);
}
|