1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file grid_stream.cc @brief This is a streaming version of the
linearly-scaling grid generator.
The grid is generated on the fly, without the in-memory sort
phase. The disk format is shared with the ordinary grid. The
separation of the ordinary grid data (coordinates, weights) from
the auxiliary data (lists of active orbitals) is taken into
account so that grid can be used for integration in the auxiliary
basis.
*/
#include <cmath>
#include <stdio.h>
#include <assert.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include "dft_common.h"
#include "grid_stream.h"
#include "grid_atomic.h"
#include "lebedev_laikov.h"
#include "molecule.h"
#include "output.h"
#include "realtype.h"
#include "utilities.h"
/* FIXME: remove this dependency */
#include "sparse_matrix.h"
//#define BEGIN_NAMESPACE(x) namespace x {
// #define END_NAMESPACE(x) } /* x */
typedef ergo_real real;
/* NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE */
BEGIN_NAMESPACE(Grid)
/** Ignore all grid points that partitioning scales down by more than
WEIGHT_THRESHOLD */
static const real WEIGHT_THRESHOLD = 1e-15;
/** A grid describing a radial grid for an atom with a specific
charge. */
class RadialGrid {
public:
real *rad; /**< Array of radial grid points */
real *weights; /**< Array of the weights associated with the grid points */
int *nAngular; /**< array of sizes of corresponding angular grids. */
int noOfRadPoints;
RadialGrid(int charge_, RadialScheme* rs, int angMin, int angMax);
int getCharge() const { return charge; }
real getRadius() const { return rad[noOfRadPoints-1]; }
unsigned getPointCount() const {
unsigned s = 0;
for(int j=0; j<noOfRadPoints; ++j)
s += nAngular[j];
return s;
}
~RadialGrid() {
delete []rad; delete []weights; delete []nAngular;
}
protected:
void setAngularFixed(int minAng, int maxAng);
private:
int charge;
};
void
RadialGrid::setAngularFixed(int minAng, int maxAng)
{
static const real BOHR = 1.0/0.529177249;
real rBragg = BraggRadii[charge]*BOHR;
/* maxAng specified for carbon-type atoms, corrections for ligher
and heavier atoms. */
if(charge<=2)
maxAng -= 10;
else if(charge>10) {
if(charge<=18)
maxAng += 5;
else if(charge<=36)
maxAng += 10;
else maxAng += 15;
}
int currentAng = maxAng;
int maxAngular = ll_npoint(maxAng);
for (int i=0; i<noOfRadPoints; i++) {
if(rad[i]<rBragg) { /* Prune */
int iAngPoints = int(maxAngular*rad[i]/rBragg);
currentAng = ll_order(iAngPoints);
if(currentAng<minAng) currentAng = minAng;
} /* else current_ang = maxang; */
nAngular[i] = ll_npoint(currentAng);
}
}
RadialGrid::RadialGrid(int charge_, RadialScheme* rs,
int angMin, int angMax) : charge(charge_)
{
noOfRadPoints = rs->gridSize;
rad = new real[noOfRadPoints];
weights = new real[noOfRadPoints];
nAngular = new int[noOfRadPoints];
rs->generate(rad, weights);
setAngularFixed(angMin, angMax);
}
class AtomicGrid {
const RadialGrid* rGrid;
public:
Vector3D center;
const RadialGrid& getRadialGrid() const { return *rGrid; }
/** Returns "radius" of an atomic grid. It stretches really bit
longer than the last grid point. */
real radius() const {
return rGrid->getRadius();
}
int charge() const { return rGrid->getCharge(); }
unsigned getPointCount() const { return rGrid->getPointCount(); }
AtomicGrid(const AtomicGrid& a) :
rGrid(a.rGrid), center(a.center) {}
AtomicGrid(const real c[3], const RadialGrid* rg) :
rGrid(rg), center(c[0], c[1], c[2]) { }
AtomicGrid(const Atom& atom, const RadialGrid* rg) :
rGrid(rg), center(atom.coords[0],atom.coords[1],atom.coords[2]) { }
};
/** "Block" partitioning is the only one implemented now... We rename
it here to Box partitioner to avoid name space conflicts.
*/
class BoxPartitioner {
const real (*coor)[3];
real *rj;
long_real *p_kg;
long_real *vec;
real *invAtomDistances; /**< a triangular array */
real *atomFactors; /**< a triangular array */
static const int HARDNESS = 11;
real xpasc[HARDNESS], apasc;
unsigned maxPointCnt;
unsigned maxAtomPointCnt;
unsigned maxRelevantAtoms;
int LDA; /* leading dimension of rj and p_kg */
void prepare(const std::vector<AtomicGrid>& atoms,
unsigned noOfRelevantAtoms, const unsigned *relevantAtoms,
unsigned pointCnt, const real (*gridPoints)[3]);
/** return distance between given pair of relevant atoms. Arguments
i and j specify the number of the atoms on the list of relevant
atoms. */
real getInvDistanceBetweenAtoms(int i, int j) const {
return i>j
? invAtomDistances[(i*(i-1))/2 + j] : invAtomDistances[(j*(j-1))/2 +i];
}
real getFactor(int i, int j) const {
return i>j
? atomFactors[(i*(i-1))/2 + j] : atomFactors[(j*(j-1))/2 +i];
}
public:
BoxPartitioner();
~BoxPartitioner();
unsigned process(unsigned atomNumber,
const std::vector<AtomicGrid>& atomGrids,
int noOfRelevantAtoms,
const unsigned *relevantAtoms,
unsigned batchLength,
real (*coor)[3], real *w);
};
/** Initializez the BoxPartitioner object. */
BoxPartitioner::BoxPartitioner()
: coor(NULL), rj(NULL), p_kg(NULL), vec(NULL),
invAtomDistances(NULL), atomFactors(NULL),
maxPointCnt(0), maxAtomPointCnt(0), maxRelevantAtoms(0)
{
int h;
real facult[HARDNESS], isign = -1;
facult[0] = 1;
for(h=1; h<HARDNESS; h++)
facult[h] = facult[h-1]*h;
for(h=HARDNESS-1; h>=0; h--) {
isign = -isign;
xpasc[h] = isign*facult[HARDNESS-1]/
((2*h+1)*facult[h]*facult[HARDNESS-1-h]);
}
xpasc[0] = 1;
apasc = 0;
for(h=0; h<HARDNESS; h++) apasc += xpasc[h];
apasc = 0.5/apasc;
}
BoxPartitioner::~BoxPartitioner()
{
if(rj) delete []rj;
if(p_kg) delete []p_kg;
if(vec) delete []vec;
if(invAtomDistances) delete []invAtomDistances;
if(atomFactors) delete []atomFactors;
}
void
BoxPartitioner::prepare(const std::vector<AtomicGrid>& atoms,
unsigned noOfRelevantAtoms,
const unsigned *relevantAtoms,
unsigned pointCnt, const real (*gridPoints)[3])
{
unsigned ptno;
coor = gridPoints;
LDA = pointCnt;
/* FIXME: optimize reallocation strategies to avoid increases by 1? */
if (noOfRelevantAtoms*pointCnt > maxAtomPointCnt) {
maxAtomPointCnt = noOfRelevantAtoms*pointCnt;
if (rj) delete []rj;
if (p_kg) delete []p_kg;
rj = new real[noOfRelevantAtoms*pointCnt];
p_kg = new long_real[noOfRelevantAtoms*pointCnt];
}
if (pointCnt > maxPointCnt) {
maxPointCnt = pointCnt;
if (vec) delete []vec;
vec = new long_real[pointCnt];
}
if (noOfRelevantAtoms > maxRelevantAtoms) {
maxRelevantAtoms = noOfRelevantAtoms;
if(invAtomDistances) {
delete []invAtomDistances;
delete []atomFactors;
}
invAtomDistances = new real[(noOfRelevantAtoms*(noOfRelevantAtoms-1))/2];
atomFactors = new real[(noOfRelevantAtoms*(noOfRelevantAtoms-1))/2];
}
memset(vec, 0, pointCnt*sizeof(vec[0]));
for(unsigned i=0; i<noOfRelevantAtoms; i++) {
int atno = relevantAtoms[i];
real iradius =
BraggRadii[(atoms[atno].charge()>=(signed)BraggSize
? BraggSize-1 : atoms[atno].charge())];
for(unsigned j=0; j<i; j++) {
int atno2 = relevantAtoms[j];
real d = atoms[atno].center.dist(atoms[atno2].center);
real jradius =
BraggRadii[(atoms[atno2].charge()>=(signed)BraggSize
? BraggSize-1 : atoms[atno2].charge())];
real chi = template_blas_sqrt(iradius/jradius);
real temp = (chi-1)/(chi+1);
temp = temp/(temp*temp-1);
if(temp>0.5) temp = 0.5;
else if(temp<-0.5) temp = -0.5;
atomFactors[(i*(i-1))/2 + j] = temp;
invAtomDistances[(i*(i-1))/2 + j] = 1.0/d;
}
real *rji = rj + i*LDA;
long_real *p_kgi = p_kg + i*LDA;
for(ptno=0; ptno<pointCnt; ptno++) {
real dx = atoms[atno].center[0] - gridPoints[ptno][0];
real dy = atoms[atno].center[1] - gridPoints[ptno][1];
real dz = atoms[atno].center[2] - gridPoints[ptno][2];
rji [ptno] = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
p_kgi[ptno] = 1.0;
}
}
}
/** Applies the partitioning factors to the the grid points associated
with given atom.
@param atomNumber index of the atom that the grid
points are associated with, in the relevantAtoms array.
@param atomGrids the list of all atom grids.
@param noOfRelevantAtoms the number of atoms relevant for the box
being processed. They need to be taken into account when computing
the partitioning weights.
@param relevantAtoms the indices of the relevant atoms in the
atomGrids vector.
@param batchLength number of the grid points the partitioning
weights have to be computed for.
@param coor their cartesian coordinates. Will be modified if the
grid point compression occurs.
@param w Their weights - they will be modified.
@returns new batch length after compression.
*/
unsigned
BoxPartitioner::process(unsigned atomNumber,
const std::vector<AtomicGrid>& atomGrids,
int noOfRelevantAtoms,
const unsigned *relevantAtoms,
unsigned batchLength,
real (*coor)[3], real *w)
{
int i, j;
unsigned ptno;
prepare(atomGrids, noOfRelevantAtoms, relevantAtoms, batchLength, coor);
for(i=1; i<noOfRelevantAtoms; i++) {
const real *distAtomGridI = rj + LDA*i;
long_real *p_kgI = p_kg + LDA*i;
for(j=0; j<i; j++) {
const real *distAtomGridJ = rj + LDA*j;
long_real *p_kgJ = p_kg + LDA*j;
long_real mu, mu2, g_mu;
real invDist = getInvDistanceBetweenAtoms(i, j);
real bFac = getFactor(i, j);
for(ptno=0; ptno<batchLength; ptno++) {
mu =(distAtomGridI[ptno]-distAtomGridJ[ptno])*invDist;
#if 0
if( std::fabs(mu>1))
printf("Too large mu: %g by %g ptno: %i\n", mu, 1-std::fabs(mu), ptno);
#endif
if(mu>1.0) mu = 1.0;
else if(mu<-1.0) mu = -1.0;
mu += bFac*(1-mu*mu);
mu2 = mu*mu;
g_mu = 0;
for(int h=0; h<HARDNESS; h++) {
g_mu += xpasc[h]*mu;
mu *= mu2;
}
long_real fac = apasc*g_mu;
if(fac>0.5) fac = 0.5;
else if(fac<-0.5) fac = -0.5;
p_kgI[ptno] *= 0.5-fac;
p_kgJ[ptno] *= 0.5+fac;
}
}
}
/* compute weight normalization factors */
for(i=0; i<noOfRelevantAtoms; i++) {
const long_real *p_kgI = p_kg + LDA*i;
for(ptno=0; ptno<batchLength; ptno++)
vec[ptno] += p_kgI[ptno];
}
/*
* Apply the computed weights.
*/
const long_real *myP_kg = p_kg + LDA*atomNumber;
unsigned dest = 0;
for(unsigned src=0; src<batchLength; src++) {
real fac = myP_kg[src]/vec[src];
if(fac>=WEIGHT_THRESHOLD) {
w[dest] = w[src]*fac;
coor[dest][0] = coor[src][0];
coor[dest][1] = coor[src][1];
coor[dest][2] = coor[src][2];
dest++;
}
}
return dest;
}
/** A class that is able to quickly determine the active shells that
overlap with given box in space. */
class ActiveBfShells {
const GridGenMolInfo& ggmi;
real *rShell2;
public:
explicit ActiveBfShells(const GridGenMolInfo& ggmi_)
: ggmi(ggmi_), rShell2(new real[ggmi_.noOfShells])
{
ggmi.setShellRadii(rShell2);
}
int getMaxShells() const {
return ggmi.noOfShells;
}
~ActiveBfShells() {
delete []rShell2;
}
void setForBox(const Box& b, int *nBlocks, int (*shlBlocks)[2]) const;
/**< the start and stop+1 indexes. */
static int getNoOfShells(int nBlocks,
int (*shlBlocks)[2]) {
int sum = 0;
for(int block=0; block<nBlocks; block++)
sum += shlBlocks[block][1]-shlBlocks[block][0];
return sum;
}
};
void
ActiveBfShells::setForBox(const Box& box,
int *nBlocks, int (*shlBlocks)[2]) const
{
real center[3];
for(int i=0; i<3; i++)
center[i] = 0.5*(box.lo[i]+box.hi[i]);
real cellSize = box.size(box.getMaxDim());
ggmi.getBlocks(center, cellSize, rShell2, nBlocks, shlBlocks);
}
/** Saves the grid saving context. Contains the information that is
changed as the grid tree is traversed while it is being saved. */
struct StreamSaveContext {
FILE *stream;
int (*shlBlocks)[2];
BoxPartitioner& partitioner;
unsigned savedPoints;
unsigned boxCount;
unsigned myRank;
StreamSaveContext(FILE *f, BoxPartitioner& p, unsigned maxShells,
unsigned rank)
: stream(f), shlBlocks(new int[maxShells][2]),
partitioner(p), savedPoints(0), boxCount(0), myRank(rank) {}
~StreamSaveContext()
{ delete []shlBlocks; }
};
/** Streamlined, abstract grid generation class. This class does not
depend explicitly on the representation of the basis set and
molecule. All such dependence is abstracted away in case the grid
generator is to be used with another program. */
class Stream {
public:
real boxSize;
bool saveToFile(const char *fname, int noOfThreads);
Stream(ActiveBfShells& abs, RadialScheme *rs,
real radint, int angmin, int angmax,
real boxSize, bool forceCubic);
~Stream();
unsigned getPointCount() const { return savedPoints; }
Dft::SparsePattern *sparsePattern;
protected:
bool forceCubic;
bool saveAtomsRecursively(StreamSaveContext& ssc, const Box& box,
unsigned cnt, const unsigned atoms[],
int depth) const;
unsigned saveAtomGridInBox(unsigned iAtom, const Box& box,
BoxPartitioner& partitioner,
unsigned cnt, const unsigned atoms[],
int (*shlBlocks)[2],
FILE *stream) const;
unsigned noOfAtoms() const;
const AtomicGrid& getAtomicGrid(unsigned i) const;
void addAtom(const real coor[3], int charge, int atomNo);
void addAtom(const Atom& at, int atomNo) {
addAtom(at.coords, int(at.charge), atomNo);
}
unsigned saveBatch(unsigned batchLength, real (*coor)[3],
real *weight,
unsigned nBlocks, int (*shlBlocks)[2],
FILE *f) const;
static void* saveThread(void *data);
private:
static pthread_mutex_t fileSaveMutex;
/** We store just one entry per atom type - there is no reason to
have thousands identical copies. */
std::vector<RadialGrid*> atomTypes;
std::vector<AtomicGrid> atoms;
ActiveBfShells& activeShells;
RadialScheme* radialScheme;
real radialThreshold;
int angularMin, angularMax;
/* unsigned long contributionsToCompute; nPoints*nShells*nShells */
unsigned savedPoints;
unsigned expectedPoints;
int noOfThreads;
};
pthread_mutex_t Stream::fileSaveMutex = PTHREAD_MUTEX_INITIALIZER;
const AtomicGrid&
Stream::getAtomicGrid(unsigned i) const
{
return atoms[i];
}
inline unsigned
Stream::noOfAtoms() const
{
return atoms.size();
}
void
Stream::addAtom(const real coor[3], int charge, int atomNo)
{
std::vector<RadialGrid*>::iterator i;
for(i= atomTypes.begin(); i != atomTypes.end(); ++i)
if( (*i)->getCharge() == charge)
break;
if(i == atomTypes.end()) {
radialScheme->init(atomNo, charge, radialThreshold);
RadialGrid *rg = new RadialGrid( charge, radialScheme,
angularMin, angularMax);
atomTypes.push_back(rg);
atoms.push_back(AtomicGrid(coor, rg));
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"Grid for charge %d: %d radial points, %d total, r=%f",
charge, rg->noOfRadPoints,
rg->getPointCount(), (double)rg->getRadius());
#if 0
printf("Added atom type with charge %f and radius %g, %u points\n",
charge, rg->getRadius(), rg->getPointCount());
#endif
} else {
atoms.push_back(AtomicGrid(coor, *i));
}
AtomicGrid &ag = atoms.back();
unsigned nPoints = ag.getPointCount();
expectedPoints += nPoints;
}
/** Saves a batch of grid points to given file. */
unsigned
Stream::saveBatch(unsigned batchLength, real (*coor)[3],
real *weight,
unsigned nBlocks, int (*shlBlocks)[2],
FILE *f) const
{
pthread_mutex_lock(&fileSaveMutex);
if(fwrite(&batchLength, sizeof(batchLength), 1, f)!=1 ||
fwrite(&nBlocks, sizeof(nBlocks), 1, f) != 1 ||
fwrite(shlBlocks, sizeof(int), nBlocks*2, f) != nBlocks*2 ||
fwrite(coor, sizeof(real), 3*batchLength, f) != 3*batchLength ||
fwrite(weight, sizeof(real), batchLength, f) != batchLength)
throw "Cannot save grid point batch on file";
/*unsigned nShells = activeShells.getNoOfShells();
contributionsToCompute += batchLength*nShells*nShells; */
if(sparsePattern)
sparsePattern->add(nBlocks, shlBlocks);
pthread_mutex_unlock(&fileSaveMutex);
return batchLength;
}
/** Method saves all grid points associated with specified atom,
located in the specified box. It will also save the associated
auxiliary information (usually a list of active orbitals) - this
is why we pass an atom list. FIXME: this probably needs to be
thought through: what factor decides the atom radius, really? Is
it max(auxiliaryRadius, gridRadius)?
*/
unsigned
Stream::saveAtomGridInBox(unsigned iAtom, const Box& box,
BoxPartitioner& partitioner,
unsigned cnt, const unsigned relevantAtoms[],
int (*shlBlocks)[2],
FILE *stream) const
{
/* MAX_BATCH_LENGTH Must be larger than the densest angular grid. */
/* Elias note 2016-07-08: The MAX_BATCH_LENGTH value here was
decreased from 8192 to 4096 because the 8192 was apparently too
large when running on a Mac, it seemed like the threads ran out
of stack space then. */
/* Elias note 2017-12-21: The MAX_BATCH_LENGTH value here was
decreased again, this time from 4096 to 2048, because the 4096
value was apparently too large when running on a Mac with long
double precision, there was a "bus error" problem then that
seemed to be fixed by reducing MAX_BATCH_LENGTH. */
/* FIXME: there does not seem to be proper checking if the
MAX_BATCH_LENGTH value is too small, it just gives wrong results
without detecting the error. */
static const unsigned MAX_BATCH_LENGTH = 2048;
const AtomicGrid& atom = atoms[relevantAtoms[iAtom]];
real dist = box.getDistanceTo(atom.center.v);
const RadialGrid& rGrid = atom.getRadialGrid();
assert(rGrid.noOfRadPoints>0);
assert(rGrid.rad[rGrid.noOfRadPoints-1]>rGrid.rad[0]);
real coor[MAX_BATCH_LENGTH][3];
real weight[MAX_BATCH_LENGTH];
real angX[MAX_BATCH_LENGTH], angY[MAX_BATCH_LENGTH], angZ[MAX_BATCH_LENGTH];
real angW[MAX_BATCH_LENGTH];
unsigned usedPoints = 0;
int nBlocks;
unsigned savedPoints = 0;
#if 0
/* amazingly enough, these memsets quieten valgrind warnings with
long double calculations. */
memset(coor, 0, sizeof(real)*3*MAX_BATCH_LENGTH);
memset(weight, 0, sizeof(real)*MAX_BATCH_LENGTH);
#endif
activeShells.setForBox(box, &nBlocks, shlBlocks);
if(nBlocks == 0) {
#if 0
printf("Got zero AO blocks for box (%f,%f,%f)-(%f,%f,%f).\n",
box.lo[0], box.lo[1], box.lo[2],
box.hi[0], box.hi[1], box.hi[2]);
#endif
return 0;
}
for (int i=0; i<rGrid.noOfRadPoints; i++) {
/* Skip early entire grid point shells that do not reach the box
in question. Point by point screening is done after grid shell
generation. */
if (rGrid.rad[i] < dist)
continue;
/* Create the part of the grid associated with the atom that lies
within the box. */
int nAngPoints = rGrid.nAngular[i];
if(nAngPoints > (signed)MAX_BATCH_LENGTH)
throw "MAX_BATCH_LENGTH too small!";
/* Add points to the batch here... */
real radius = rGrid.rad[i];
real rWeight = rGrid.weights[i]*4.0*M_PI;
ll_sphere(nAngPoints, angX, angY, angZ, angW);
#if 0
printf("B %2i: r %8.2f W: %8.2g Ang: %d| %g %g %g\n", i, radius, rWeight,
nAngPoints, angX[0], angY[0], angZ[0]);
#endif
for(int pnt=0; pnt<nAngPoints; pnt++) {
coor[usedPoints][0] = atom.center[0] + angX[pnt]*radius;
coor[usedPoints][1] = atom.center[1] + angY[pnt]*radius;
coor[usedPoints][2] = atom.center[2] + angZ[pnt]*radius;
if(box.contains(coor[usedPoints]) ) {
weight[usedPoints] = angW[pnt]*rWeight;
usedPoints++;
if(usedPoints == MAX_BATCH_LENGTH) {
usedPoints = partitioner.process(iAtom, atoms, cnt, relevantAtoms,
usedPoints, coor, weight);
if(usedPoints) {
savedPoints +=
saveBatch(usedPoints, coor, weight, nBlocks, shlBlocks, stream);
usedPoints = 0;
}
}
}
}
}
/* Flush the last batch for this atom... Consider merging points
from different atoms to a single batch after partitioning. */
if(usedPoints) {
usedPoints = partitioner.process(iAtom, atoms, cnt, relevantAtoms,
usedPoints, coor, weight);
if(usedPoints) {
savedPoints +=
saveBatch(usedPoints, coor, weight, nBlocks, shlBlocks, stream);
}
}
return savedPoints;
}
/** This is a recursive procedure that generates the grid points that lie
in the specified bounding box. As an optimization, a list of atoms
that may overlap with given grid is passed so that linear scaling
can be achieved. This goal is achieved by recursive division of
the bounding box until there are no atoms that can overlap with
it, or the minimal size is achieved. In the latter case, all atoms
are iterated over and the grid points associated with them that
lie in the bounding box are saved. An associated auxiliary
information is saved as well.
An atom is considered relevant for given box, if its Voronoi
polyhedra (+safety margin) overlaps with the box.
@param ssc the saving context containing information about
selected partitioner and other grid generation specifics.
@param box save only the points within the box.
@param atomCount the number of potentially relevant atoms that have
grids overlapping with the box in question..
@param atomIndices ... and their indices in the global array.
@param depth the recursion depth for logging purposes.
*/
bool
Stream::saveAtomsRecursively(StreamSaveContext& ssc, const Box& box,
unsigned atomCount,
const unsigned atomIndices[],
int depth) const
{
/** randomly chosen parameter. We need in general a better way to
determing whether the voronoi polyhedra associated with a
given atom overlaps with the box in question... */
static const ergo_real POLYHEDRA_SAFETY_MARGIN = 2.0;
if (atomCount == 0)
return true;
unsigned maxDim = box.getMaxDim();
real maxSize = box.size(maxDim);
#ifdef DEBUG
for(int d=0; d<depth; d++) printf(" ");
printf("Recursive: (%f,%f,%f) - (%f,%f,%f) atoms: %i maxSize: %f\n",
box.lo[0], box.lo[1], box.lo[2],
box.hi[0], box.hi[1], box.hi[2], atomCount, maxSize);
for(int d=0; d<depth; d++) printf(" ");
for(int d=0; d<atomCount; ++d) printf("%d ", atomIndices[d]);
puts("");
#endif
/* Now, we divide the boxes really until their smallest size because
the basis function range may be larger than the atomic grid
range. */
if ( /* atomCount > 1 &&*/ maxSize > boxSize) {
bool res = true;
std::vector<unsigned> localIndices;
localIndices.reserve(atomCount);
real splitPos = box.lo[maxDim] + 0.5*maxSize;
Box newBox = box;
newBox.hi[maxDim] = splitPos;
for(unsigned i=0; i<atomCount; i++) {
const AtomicGrid& g = getAtomicGrid(atomIndices[i]);
if (newBox.overlapsWith( g.center.v, g.radius()+POLYHEDRA_SAFETY_MARGIN))
localIndices.push_back(atomIndices[i]);
}
if (!localIndices.empty())
res = saveAtomsRecursively(ssc, newBox,
localIndices.size(),
&(*localIndices.begin()), depth+1);
newBox.hi[maxDim] = box.hi[maxDim];
newBox.lo[maxDim] = splitPos;
localIndices.clear();
for(unsigned i=0; i<atomCount; i++) {
const AtomicGrid& g = getAtomicGrid(atomIndices[i]);
if (newBox.overlapsWith( g.center.v, g.radius()+POLYHEDRA_SAFETY_MARGIN))
localIndices.push_back(atomIndices[i]);
}
if (!localIndices.empty())
res = saveAtomsRecursively(ssc, newBox,
localIndices.size(),
&(*localIndices.begin()), depth+1);
return res;
} else { /* small box - or just one atom left... */
ssc.boxCount++;
if( ssc.boxCount % noOfThreads != ssc.myRank) return true;
/* get the list of relevant basis shells here. */
// unsigned c = savedPoints;
for(unsigned i=0; i<atomCount; i++) {
const AtomicGrid& ga = getAtomicGrid(atomIndices[i]);
if (!box.overlapsWith(ga.center.v, ga.radius()+POLYHEDRA_SAFETY_MARGIN)) {
printf("Atom %i -> %i absolute does not overlap\n", i, atomIndices[i]);
continue;
}
/* Save all the grid points of this atoms in the given box, does
the partitioning as well. */
ssc.savedPoints +=
saveAtomGridInBox(i, box, ssc.partitioner,
atomCount, atomIndices,
ssc.shlBlocks, ssc.stream);
}
#if 0
printf("BOX (%f,%f,%f)-(%f,%f,%f) contains %u grid points\n",
box.lo[0], box.lo[1], box.lo[2],
box.hi[0], box.hi[1], box.hi[2],
savedPoints - c);
#endif
}
return true;
}
struct ThreadInfo {
pthread_t tid;
const Stream* stream;
FILE *f;
const Box* box;
unsigned atomCnt;
const unsigned *atoms;
unsigned myRank;
unsigned savedPoints;
bool res;
};
void*
Stream::saveThread(void *data) {
static const int SAVEGRID_ERROR = 0;
ThreadInfo *ti = (ThreadInfo*)data;
try {
BoxPartitioner partitioner;
StreamSaveContext ssc(ti->f,partitioner,
ti->stream->activeShells.getMaxShells(), ti->myRank);
ti->res =
ti->stream->saveAtomsRecursively(ssc, *ti->box,
ti->atomCnt, ti->atoms, 0);
ti->savedPoints = ssc.savedPoints;
} catch(const char *s) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"Stream::saveThread: xcWorker thread caught an exception '%s'", s);
return (void*)&SAVEGRID_ERROR;
} catch(const std::bad_alloc & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"Stream::saveThread: xcWorker thread caught an exception '%s'", e.what());
return (void*)&SAVEGRID_ERROR;
} catch(const std::runtime_error & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"Stream::saveThread: xcWorker thread caught an exception '%s'", e.what());
return (void*)&SAVEGRID_ERROR;
} catch(...) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"Stream::saveThread: xcWorker thread caught unexpected exception.");
return (void*)&SAVEGRID_ERROR;
}
return NULL;
}
/** Generates the grid and saves it to the file with given name.
@return Number of saved grid points.
*/
bool
Stream::saveToFile(const char *fname, int noOfThreads)
{
bool res;
FILE *f = fopen(fname, "wb");
if (!f) return false;
unsigned n = noOfAtoms();
unsigned *atomIndices = new unsigned[n];
for(unsigned i=0; i<n; i++) atomIndices[i] = i;
Box box;
getBoundingBox(box, atoms.begin(), atoms.end());
/* FIXME: Correct the box size so that the smallest level boxes are
about cubic! */
if (forceCubic) {
for(int i=0; i<3; ++i) {
real center = 0.5* (box.lo[i] + box.hi[i]);
real dim = 0.5* (box.hi[i] - box.lo[i]);
int x, dimi = int(std::ceil((long double)(dim/boxSize)));
for(x=1; x<dimi; x *=2);
dim = x*boxSize;
box.lo[i] = center-dim;
box.hi[i] = center+dim;
}
}
/* End of fix*/
this->noOfThreads = noOfThreads;
if(noOfThreads<=1) {
BoxPartitioner p;
StreamSaveContext ssc(f, p, activeShells.getMaxShells(), 0);
res = saveAtomsRecursively(ssc, box, n, atomIndices, 0);
savedPoints = ssc.savedPoints;
} else {
std::vector<ThreadInfo> threads(noOfThreads);
for(int i=0; i<noOfThreads; i++) {
threads[i].stream = this;
threads[i].f = f;
threads[i].box = &box;
threads[i].atomCnt = n;
threads[i].atoms = atomIndices;
threads[i].myRank = i;
if(pthread_create(&threads[i].tid, NULL, saveThread, &threads[i]) != 0)
res = false;
}
savedPoints = 0;
res = true;
for(int i=0; i<noOfThreads; i++) {
void *ptr;
pthread_join(threads[i].tid, &ptr);
if(ptr != NULL)
res = false;
savedPoints += threads[i].savedPoints;
res = res && threads[i].res;
}
}
delete []atomIndices;
if(fclose(f) != 0)
throw "Cannot close the grid file";
return res;
}
/** The Stream constructor. Takes over the radial scheme object, which
has to be allocated dynamically. */
Stream::Stream(ActiveBfShells& abs, RadialScheme *rs,
real radint, int angmin, int angmax,
real boxSize_, bool forceCubic_)
: boxSize(boxSize_), sparsePattern(NULL), forceCubic(forceCubic_),
activeShells(abs), radialScheme(rs), radialThreshold(radint),
angularMin(angmin), angularMax(angmax),
savedPoints(0), expectedPoints(0), noOfThreads(1)
{
}
Stream::~Stream()
{
delete radialScheme;
for(std::vector<RadialGrid*>::iterator i= atomTypes.begin();
i != atomTypes.end(); ++i) {
delete *i;
}
/* It can happen with GC2 radial grid that some of the grid points
are ignored because no AO function reaches there. */
if (savedPoints != expectedPoints) {
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"Grid pruned from %d to %d grid points.",
expectedPoints, savedPoints);
/* throw "Grid generator lost some points"; */
}
}
END_NAMESPACE(Grid)
/* NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE NAMESPACE */
/** Ergo-specific GridStream implementation. */
class ErgoGridStream : public Grid::Stream {
Grid::ActiveBfShells ergoShells;
public:
const Dft::GridParams& gsSettings;
ErgoGridStream(const Dft::GridParams& gss, const GridGenMolInfo& molInfo,
RadialScheme *rs);
};
ErgoGridStream::ErgoGridStream(const Dft::GridParams& gss,
const GridGenMolInfo& molInfo,
RadialScheme *rs)
: Stream(ergoShells, rs, gss.radint, gss.angmin, gss.angmax,
gss.boxSize, gss.cubicBoxes),
ergoShells(molInfo), gsSettings(gss)
{
for(int i=0; i<molInfo.noOfAtoms; i++) {
int dummy, charge, mult;
real c[3];
molInfo.getAtom(i, &dummy, &c, &charge, &mult);
addAtom(c, charge, i);
}
}
/** Creates the grid object. The Settings object must have longer
lifetime than the grid itself - its content is not copied. */
ErgoGridStream*
grid_stream_new(const struct Dft::GridParams& gss,
const GridGenMolInfo& molInfo)
{
RadialScheme *radScheme;
switch(gss.radialGridScheme) {
default:
case Dft::GridParams::LMG:
radScheme = new RadialSchemeLMG(molInfo);
break;
case Dft::GridParams::GC2:
radScheme = new RadialSchemeGC2();
break;
case Dft::GridParams::TURBO:
radScheme = new RadialSchemeTurbo();
break;
}
return new ErgoGridStream(gss, molInfo, radScheme);
}
void
grid_stream_set_sparse_pattern(ErgoGridStream *stream,
Dft::SparsePattern *pattern)
{
stream->sparsePattern = pattern;
}
/** Generate grid for given molecule.
@param stream The grid object.
@param fname The file name the grid is to be saved to.
@param noOfThreads the number of threads that are supposed to be
created and used for the grid generation.
*/
unsigned
grid_stream_generate(ErgoGridStream *stream, const char *fname,
int noOfThreads)
{
unsigned res;
Util::TimeMeter tm;
if(noOfThreads<1)
noOfThreads = 1;
try {
const Dft::GridParams& gss = stream->gsSettings;
const char *gridType;
switch(gss.radialGridScheme) {
case Dft::GridParams::GC2: gridType = "GC2"; break;
case Dft::GridParams::LMG: gridType = "LMG"; break;
case Dft::GridParams::TURBO: gridType = "Turbo"; break;
default: gridType = "Invalid"; break;
}
do_output(LOG_CAT_INFO, LOG_AREA_DFT,
"Generating %s grid Radint = %g AngInt: [ %d %d ]",
gridType, (double)gss.radint, gss.angmin, gss.angmax);
stream->saveToFile(fname, noOfThreads);
res = stream->getPointCount();
} catch(const char *s) {
printf("Error generating the grid: %s\n", s);
fprintf(stderr, "Error generating the grid: %s\n", s);
abort();
}
tm.print(LOG_AREA_DFT, __func__);
return res;
}
void
grid_stream_free(ErgoGridStream *stream)
{
delete stream;
}
|