1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/*-*-mode: C; c-indentation-style: "bsd"; c-basic-offset: 4; -*-*/
/** @file integrator.cc The DFT integrator.
(c) Pawel Salek, pawsa@theochem.kth.se.
2001.07.13
The WRKMEM memory block is not used since it should be deprecated.
It might be therefore useful to enable memory overcommiting. On linux-2.4.x
it can be done with echo 1 > /proc/sys/vm/overcommit_memory or a
sysctl call. We use it only to pass it to other Fortran routines we call.
OPTIMIZATIONS: ordinary calculation uses approximately only 4%
total CPU time in this code. Most likely, the optimizations should
be sought somewhere else. The simple optimization path is though to
use block structure of kappa matrices to reduce time by 2 for
larger matrices.
integrator.cc provides dft_integrator() routine. It is passed some
standard parameters and a table of callbacks and associated
closures (callback data). The callback gets the grid data for
current point as well as its own closure.
The grid file is assumed to be available on call to
dft_integrator(). Otherwise, it is a black-box implementation.
*/
#include <assert.h>
#include <cmath>
#include <pthread.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#define __CVERSION__
#include "aos.h"
#include "integrator.h"
#include "functionals.h"
#include "output.h"
#include "rho-mat.h"
#include "sparse_matrix.h"
#include "grid_reader.h"
#include "dft_common.h"
/* blocksz_t is a variable that matches the one used by the
* fortran runtime library to store the block size. This type
* is compilator dependent but is usually int or long int.
*/
#if defined(__gnu_linux__)
/* gnu compilers use this */
typedef long blocksz_t;
#else
/* safe default for all the other compilers */
typedef int blocksz_t;
#endif
#define max(a,b) ((a)>(b)? (a):(b))
/** the DFT grid buffer length. grid_getchunk_blocked() will never try
to read buffers longer than this. */
#define GRID_BUFF_SZ 100000
/* =================================================================== */
/* BLOCKED INTEGRATORS */
/* =================================================================== */
/* Blocked integrator(s) have altered the block structure to enhance
* data locality and increase length of internal loops. This should
* increase performance even for small molecules and reach linear
* scaling for large ones by enabling vector-like optimization and
* enhancing data locality.
*/
/* dft_grid_blocked_new:
initialize grid data.
ndmat - number of density matrices handled at the same time
needed for temporary array.
bllen - grid point batch length.
*/
DftIntegratorBl*
dft_integrator_bl_new(Functional* f, int ndmat,
int bllen, int needlondon, const BasisInfoStruct& bis)
{
int kmax, nbast;
DftIntegratorBl* grid = new DftIntegratorBl;
grid->coor = (real (*)[3])calloc(3*GRID_BUFF_SZ, sizeof(real));
grid->weight = (real*)calloc(GRID_BUFF_SZ, sizeof(real));
grid->dogga = f->is_gga();
grid->dfthri = 1e-13;
grid->needlap= 0;
grid->needgb = needlondon;
grid->nsym = 1;
grid->ndmat = ndmat;
grid->nbast = nbast = bis.noOfBasisFuncs;
kmax = bis.noOfShells;
#ifdef DALTON
geodrv = grid->dogga ? 1 : 0;
setupsos_(&geodrv, &grid->needgb, &grid->ntypso, &grid->london_off);
grid->london_off--; /* convert from fortran offset type */
#else
grid->ntypso = grid->dogga ? 4 : 1;
#endif
grid->atv = (real*)calloc(bllen*nbast*grid->ntypso, sizeof(real));
grid->shlblocks = (int (*)[2])dal_malloc(2*kmax*sizeof(int));
grid->basblocks = (int (*)[2])dal_malloc(2*kmax*8*sizeof(int));
/* Allocate memory for rho, taking advantage of the union. */
grid->r.rho = dal_new(ndmat*bllen,real);
grid->g.grad = (real (*)[3])dal_malloc(ndmat*3*bllen*sizeof(real));
/* and set some aliases in case somebody needed them for open-shell. *
* Observe that rho aliases with rhoa. */
if(ndmat == 2) {
grid->r.ho.b = grid->r.ho.a + bllen;
grid->g.rad.b = grid->g.rad.a + bllen;
}
return grid;
}
void
dft_integrator_bl_free(DftIntegratorBl *res)
{
free(res->coor);
free(res->weight);
free(res->atv);
free(res->r.rho);
free(res->g.grad);
free(res->shlblocks);
free(res->basblocks);
delete res;
}
/* grid_blocked_getval:
evaluates a block of bllen orbitals
*/
void blgetsos_(int *nvclen, real GSO[], real COOR[],
int *NBLCNT, int IBLCKS[], real WORK[], int *LWORK,
int *NBAST, int *DOLND, int *DOGGA, real *DFTHRI,
const int*IPRINT);
static void
output_memory_usage(bool& a)
{
static pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&m);
if(!a){
output_current_memory_usage(LOG_AREA_DFT, "XC integration loop");
a = true;
}
pthread_mutex_unlock(&m);
}
template<typename DensityType>
static real
dft_integrate(int ndmat,
const DensityType* const * dmat,
const BasisInfoStruct& bis,
const Molecule& mol, const Dft::GridParams& gss,
int nThreads, DftBlockCallback cb, void *cb_data)
{
int npoints, blocksz;
int nbast = bis.noOfBasisFuncs;
real electrons; /* alpha electrons only most of the time */
DftIntegratorBl* grid;
real *dmagao;
DftGridReader* rawgrid;
int nder;
static bool firstThreadFlag;
firstThreadFlag = false;
ErgoMolInfo mol_info(bis, mol);
dmagao = dal_new(nbast*DFT_MAX_BLLEN,real);
grid = dft_integrator_bl_new(selected_func, ndmat,
DFT_MAX_BLLEN, false, bis);
/* start integration */
electrons = 0.0;
nder = grid->dogga ? 1 : 0;
Dft::Matrix *mat = createGridMatrix(*dmat[0]);
rawgrid = grid_open_full(&mol_info, gss, NULL, mat, bis);
delete mat;
if(sync_threads(false, nThreads) != 0) throw "Error syncing threads";
output_memory_usage(firstThreadFlag);
npoints = 0;
while( (blocksz=grid_getchunk_blocked(rawgrid, GRID_BUFF_SZ,
&grid->shl_bl_cnt,
&grid->shlblocks[0][0],
&grid->coor[0],
grid->weight)) >=0) {
int ipnt;
ergoShellsToOrbs(&grid->shl_bl_cnt, grid->shlblocks,
grid->bas_bl_cnt, grid->basblocks,
bis);
for(ipnt=0; ipnt<blocksz; ipnt+=DFT_MAX_BLLEN) {
int i, j, lo, hi;
int len = ipnt+DFT_MAX_BLLEN<blocksz ? DFT_MAX_BLLEN : blocksz-ipnt;
grid->curr_point = ipnt;
dft_get_orbs(len, grid->atv, (real(*)[3]) &grid->coor[ipnt][0],
grid->shl_bl_cnt, (int(*)[2]) &grid->shlblocks[0][0],
nder, bis);
for(i=0; i<ndmat; i++) {
int roff = i*DFT_MAX_BLLEN;
if(grid->dogga)
getrho_blocked_gga(nbast, *dmat[i], grid->atv,
grid->bas_bl_cnt,
grid->basblocks, grid->shl_bl_cnt,
dmagao, len, grid->r.rho+roff,
grid->g.rad.a+roff);
else
getrho_blocked_lda(nbast, *dmat[i], grid->atv,
grid->bas_bl_cnt,
grid->basblocks, grid->shl_bl_cnt,
dmagao, len, grid->r.rho+roff);
for(j=0; j<len; j++)
electrons += grid->weight[ipnt+j]*grid->r.rho[j+roff];
}
lo = 0; hi = len;
npoints += len;
/* Consider skipping low-density points at the beginning
and the end of the batch by modifying lo and hi. */
if(lo<hi)
cb(grid, dmagao, len, lo, hi, cb_data);
}
}
grid_close(rawgrid);
#ifdef VAR_MPI
FSYM(dftintcollect)(&electrons);
#endif
free(dmagao);
dft_integrator_bl_free(grid);
return electrons;
}
BEGIN_NAMESPACE(Dft)
/** reads the grid and calls the callback function for each group of
grid points. As a courtesy, evaluates first for each batch the
density.
@param ndmat number of density matrices to evaluate
@param dmat square density matrices.
@param bis a structure describing the used basis set.
@param mol a structure describing the molecule.
@param gss a structure describing the grid settings.
@param nThreads - how many threads will execute this function
simultaneously. Needed for synchronisation purposes.
@param cb function to be evaluated for each batch of grid points
@param cb_data its closure.
*/
real
integrate(int ndmat, const FullMatrix * const *dmat,
const BasisInfoStruct& bis,
const Molecule& mol, const Dft::GridParams& gss,
int nThreads, DftBlockCallback cb, void *cb_data)
{
return dft_integrate(ndmat, dmat, bis, mol, gss, nThreads, cb, cb_data);
}
real
integrate(int nDmat, const SparseMatrix * const *dmat,
const BasisInfoStruct& bis,
const Molecule& mol, const Dft::GridParams& gss,
int nThreads, DftBlockCallback cb, void *cb_data)
{
return dft_integrate(nDmat, dmat, bis, mol, gss, nThreads, cb, cb_data);
}
END_NAMESPACE(Dft)
|