1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file lin_trans.cc
@brief Blocked DFT Linear Response contribution evaluator.
@author: Pawel Salek <em>responsible</em>
*/
/* -*-mode:c; c-basic-offset:4; -*- */
#include "config.h"
#include <stdio.h>
#include <cmath>
#include <string.h>
#include <time.h>
#include <sys/times.h>
#include <unistd.h>
#include <pthread.h>
static pthread_mutex_t dft_prop_mutex = PTHREAD_MUTEX_INITIALIZER;
#include "aos.h"
#include "dft_common.h"
#include "functionals.h"
#include "integrator.h"
#include "output.h"
#include "grid_matrix.h"
#include "rho-mat.h"
#include "utilities.h"
/* restrict hints should not be necessary... */
#if !defined(restrict)
#define restrict
#endif
inline int
min(int a, int b) {
return a<b ? a : b;
}
typedef struct {
const real *kappa;
real *res;
real* vt; /* dimensioned [bllen] for LDA, [bllen][4] for GGA */
int trplet, nbast, vecs_in_batch;
} LinRespBlData;
static void
lin_resp_cb_b_lda(DftIntegratorBl* grid, real * restrict tmp,
int bllen, int blstart, int blend,
LinRespBlData* data)
{
const real * restrict aos = grid->atv;
real * restrict excmat = data->res;
real * restrict vt = data->vt; /* [bllen][4] */
int ibl, i, jbl, j, k, isym, ivec;
int nbast = data->nbast;
int n2basx = nbast*nbast;
FunDensProp dp = { 0 };
for(ivec=0; ivec<data->vecs_in_batch; ivec++) {
/* compute vector of transformed densities vt */
getexp_blocked_lda(nbast, data->kappa + ivec*n2basx, grid->atv,
grid->bas_bl_cnt,
grid->basblocks, grid->shl_bl_cnt,
tmp, bllen, vt);
for(i=blstart; i<blend; i++) {
SecondDrv vxc;
real weight = grid->weight[grid->curr_point+i];
dp.rhoa = dp.rhob = 0.5*grid->r.rho[i];
dftpot1_(&vxc, &weight, &dp, &data->trplet);
vt[i] = vxc.fRR*vt[i]*2;
}
for(isym=0; isym<grid->nsym; isym++) {
const real *vPot = vt;
int (*restrict iblocks)[2] = BASBLOCK(grid,isym);
int ibl_cnt = grid->bas_bl_cnt[isym];
for(ibl=0; ibl<ibl_cnt; ibl++)
for(i=iblocks[ibl][0]; i<iblocks[ibl][1]; i++) {
int ioff = i*bllen;
for(k=blstart; k<blend; k++)
tmp[k+ioff] = aos[k+ioff]*vPot[k];
}
for(ibl=0; ibl<ibl_cnt; ibl++) {
for(i=iblocks[ibl][0]; i<iblocks[ibl][1]; i++) {
int ioff = i*nbast + ivec*n2basx;
int jsym = 0; /* inforb_.muld2h[data->ksymop-1][isym]-1; */
int (*restrict jblocks)[2] = BASBLOCK(grid,jsym);
int jbl_cnt = grid->bas_bl_cnt[jsym];
real *restrict tmpi = &tmp[i*bllen];
if (isym<jsym) continue;
for(jbl=0; jbl<jbl_cnt; jbl++) {
int jtop = min(jblocks[jbl][1],i);
for(j=jblocks[jbl][0]; j<jtop; j++) {
ergo_real s = 0;
for(k=blstart; k<blend; k++)
s += aos[k+j*bllen]*tmpi[k];
excmat[j+ioff] += s;
}
}
for(k=blstart; k<blend; k++)
excmat[i+ioff] += aos[k+i*bllen]*tmpi[k]*0.5;
}
}
}
}
}
static void
lin_resp_cb_b_gga(DftIntegratorBl* grid, real * restrict tmp,
int bllen, int blstart, int blend,
LinRespBlData* data)
{
int ibl, i, jbl, j, k, isym, ivec;
int nbast = data->nbast;
int n2basx = nbast*nbast;
real (* restrict vt3)[4] = (real(*)[4])data->vt; /* [bllen][4] */
real * restrict aos = grid->atv;
real * restrict aox = grid->atv+bllen*nbast;
real * restrict aoy = grid->atv+bllen*nbast*2;
real * restrict aoz = grid->atv+bllen*nbast*3;
real * restrict excmat = data->res;
FunDensProp dp = { 0 };
for(ivec=0; ivec<data->vecs_in_batch; ivec++) {
/* compute vector of transformed densities and dens. gradients vt3 */
getexp_blocked_gga(nbast, data->kappa + ivec*n2basx, grid->atv,
grid->bas_bl_cnt,
grid->basblocks, grid->shl_bl_cnt,
tmp, bllen, vt3);
for(i=blstart; i<blend; i++) {
SecondDrv vxc;
real facr, facg;
real weight = grid->weight[grid->curr_point+i];
real ngrad = template_blas_sqrt(grid->g.grad[i][0]*grid->g.grad[i][0]+
grid->g.grad[i][1]*grid->g.grad[i][1]+
grid->g.grad[i][2]*grid->g.grad[i][2]);
real brg, brz, b0 = vt3[i][0];
if(ngrad<1e-15|| grid->r.rho[i]<1e-15) {
vt3[i][0] = vt3[i][1] = vt3[i][2] = vt3[i][3] = 0;
continue;
}
brg = (vt3[i][1]*grid->g.grad[i][0] +
vt3[i][2]*grid->g.grad[i][1] +
vt3[i][3]*grid->g.grad[i][2]);
brz = brg/ngrad;
dp. rhoa = dp. rhob = 0.5*grid->r.rho[i];
dp.grada = dp.gradb = 0.5*ngrad;
dp.gradab = dp.grada*dp.gradb;
dftpot1_(&vxc, &weight, &dp, &data->trplet);
facr = vxc.fRZ*b0 + (vxc.fZZ-vxc.fZ/ngrad)*brz + vxc.fZG*brg;
facr = facr/ngrad + (vxc.fRG*b0+vxc.fZG*brz +vxc.fGG*brg);
facg = vxc.fZ/ngrad + vxc.fG;
vt3[i][0] = vxc.fRR*b0 + vxc.fRZ*brz+ vxc.fRG*brg;
vt3[i][1] = (grid->g.grad[i][0]*facr + facg*vt3[i][1])*2;
vt3[i][2] = (grid->g.grad[i][1]*facr + facg*vt3[i][2])*2;
vt3[i][3] = (grid->g.grad[i][2]*facr + facg*vt3[i][3])*2;
}
for(isym=0; isym<grid->nsym; isym++) {
int (*restrict iblocks)[2] = BASBLOCK(grid,isym);
int ibl_cnt = grid->bas_bl_cnt[isym];
for(ibl=0; ibl<ibl_cnt; ibl++) {
for(i=iblocks[ibl][0]; i<iblocks[ibl][1]; i++) {
real *restrict g0i = &aos[i*bllen];
real *restrict gxi = &aox[i*bllen];
real *restrict gyi = &aoy[i*bllen];
real *restrict gzi = &aoz[i*bllen];
int ioff = i*nbast + ivec*n2basx;
int jsym = 0; /* inforb_.muld2h[data->ksymop-1][isym]-1; */
int (*restrict jblocks)[2] = BASBLOCK(grid,jsym);
int jbl_cnt = grid->bas_bl_cnt[jsym];
for(k=blstart; k<blend; k++)
tmp[k] = (vt3[k][0]*g0i[k] +
vt3[k][1]*gxi[k] +
vt3[k][2]*gyi[k] +
vt3[k][3]*gzi[k]);
for(jbl=0; jbl<jbl_cnt; jbl++) {
int jtop = jblocks[jbl][1];
for(j=jblocks[jbl][0]; j<jtop; j++) {
real *restrict g0j = &aos[j*bllen];
real s = 0;
for(k=blstart; k<blend; k++)
s += g0j[k]*tmp[k];
excmat[j+ioff] += s;
}
}
}
}
}
}
}
#if 0
static void
printmat(int n, const ergo_real *m, const char *name)
{
int i, j;
printf("Printing matrix %s\n", name);
for(i=0; i<n; i++) {
for(j=0; j<n; j++)
printf("%10.5f", m[i + j*n]);
puts("");
}
}
#endif
/** dft_lin_respao performs the transformation of given transition
density @param vec and the result is stored in @param trans_vec -
both of which are square matrix A ground state density @param dens
is required.
@param bis is the basis set description structure.
@param mol contains the molecule data (is this strictly needed?)
@param gss a structure describing the grid settings.
@param nThreads tells how many threads execute this section
(needed for grid).
*/
EXTERN_C real
dft_lin_respao(const BasisInfoStruct& bis, const Molecule& mol,
const Dft::GridParams& gss,
const real *dens, const real *vec, real* trans_vec,
int nThreads)
{
real electrons = 0;
LinRespBlData lr_data; /* linear response data */
int i, j, jvec;
int nbast = bis.noOfBasisFuncs;
int n2basx = nbast*nbast;
Dft::FullMatrix density(dens, nbast);
const Dft::FullMatrix *densPtr = &density;
Util::TimeMeter tm;
lr_data.vt = dal_new(DFT_MAX_BLLEN*4, real);
lr_data.kappa = vec;
lr_data.res = dal_new(nbast*nbast, real);
lr_data.trplet= 0; /* FIXME: should be 1 when finding excitations */
lr_data.vecs_in_batch = 1; /*nosim; */
lr_data.nbast = nbast;
memset(lr_data.res, 0, nbast*nbast*sizeof(real));
electrons = Dft::integrate(1, &densPtr, bis, mol, gss, nThreads,
(DftBlockCallback)
(selected_func->is_gga() ?
lin_resp_cb_b_gga : lin_resp_cb_b_lda),
&lr_data);
pthread_mutex_lock(&dft_prop_mutex);
for(jvec=0; jvec<lr_data.vecs_in_batch; jvec++){
for(i=0; i<nbast; i++) {
int ioff = i*nbast + jvec*n2basx;
for(j=0; j<i; j++) {
int joff = j*nbast + jvec*n2basx;
real averag = 0.5*(lr_data.res[i+joff] + lr_data.res[j+ioff]);
trans_vec[i+joff] += averag;
trans_vec[j+ioff] += averag;
}
trans_vec[i+ioff] += lr_data.res[i+ioff];
}
}
pthread_mutex_unlock(&dft_prop_mutex);
free(lr_data.res);
free(lr_data.vt);
if(nThreads<=1) {
int nElectrons = mol.getNumberOfElectrons();
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"LR-DFT*%d finished. Electrons: %f(%9.3g) (serial)",
lr_data.vecs_in_batch, (double)electrons,
(double)((electrons-nElectrons)/nElectrons));
tm.print(LOG_AREA_DFT, __func__);
}
return electrons;
}
struct LinData {
const BasisInfoStruct *bis;
const Molecule *mol;
const Dft::GridParams *gss;
const real *density;
const real *inputVec;
real *transformedVec;
real electrons;
int nThreads;
};
static void*
dft_lin_resp_worker(void *data)
{
static const int LINRESP_ERROR = 1;
LinData *ld = (LinData*)data;
try {
ld->electrons =
dft_lin_respao(*ld->bis, *ld->mol, *ld->gss,
ld->density, ld->inputVec, ld->transformedVec,
ld->nThreads);
} catch(const char *s) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"dft_lin_resp_worker thread caught an exception '%s'", s);
return (void*)&LINRESP_ERROR;
} catch(const std::bad_alloc & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"dft_lin_resp_worker thread caught an exception '%s'", e.what());
return (void*)&LINRESP_ERROR;
} catch(...) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"dft_lin_resp_worker thread caught unexpected exception.");
return (void*)&LINRESP_ERROR;
}
return NULL;
}
EXTERN_C real
dft_lin_resp_mt(const BasisInfoStruct& bis, const Molecule& mol,
const Dft::GridParams& gss,
const real *dens, const real *vec, real* trans_vec)
{
int i, threads;
real electrons = 0;
Util::TimeMeter tm;
threads = dft_get_num_threads();
std::vector<LinData> data(threads);
std::vector<pthread_t> pids(threads);
for(i=0; i<threads; i++) {
data[i].bis = &bis;
data[i].mol = &mol;
data[i].gss = &gss;
data[i].density = dens;
data[i].inputVec = vec;
data[i].transformedVec = trans_vec;
data[i].nThreads = threads;
if (pthread_create(&pids[i], NULL, dft_lin_resp_worker, &data[i])) {
do_output(LOG_CAT_ERROR, LOG_AREA_DFT,
"Creation of thread # %d failed\n", i);
if (i==0)
throw "No worker threads could be started";
else
break;
}
}
while (--i >= 0) {
pthread_join(pids[i], NULL);
electrons += data[i].electrons;
}
if(threads>1) {
int nElectrons = mol.getNumberOfElectrons();
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"LR-DFT*%d finished. Electrons: %f(%9.3g) (mt)",
1, (double)electrons,
(double)((electrons-nElectrons)/nElectrons));
tm.print(LOG_AREA_DFT, __func__);
}
return electrons;
}
|