File: xc_evaluators.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (400 lines) | stat: -rw-r--r-- 14,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
/** @file xc_evaluators.h defines LDA and GGA evaluators that work
    both for dense and sparse matrices. */

/** structure describing the data needed by distributors.  This is the
    restricted-orbital formalism, cross alpha-beta terms are not
    needed. */
template<typename Matrix>
struct KsData {
    Matrix *excmat;
    real* dR;
    real* dZ;
    real energy;
  KsData(Matrix *m_, size_t s)
    : excmat(m_), dR(new real[s]), dZ(new real[s]), energy(0)
  {}
  ~KsData() {
    delete []dR;
    delete []dZ;
  }
};


/** distributes a LDA-type xc potential over the XC-matrix elements,
    with optimization for a closed shell case. Matrix is a type that
    provides an operation add(row, col, val).
 */
template<typename Matrix>
struct XCDistributorLda {
  static void distribute(DftIntegratorBl *grid,
                         int bllen, int blstart, int blend,
                         real * restrict tmp, real *restrict dR,
                         Matrix& excmat)
  {
    static const int isym = 0;
    int jbl, j, ibl, i, k;
    real * restrict aos = grid->atv;

    int (*restrict blocks)[2] = BASBLOCK(grid,isym);
    int bl_cnt = grid->bas_bl_cnt[isym];

    for(jbl=0; jbl<bl_cnt; jbl++) {
        for(j=blocks[jbl][0]; j<blocks[jbl][1]; j++) { 
            int joff = j*bllen;
            for(k=blstart; k<blend; k++)
                tmp[k] = aos[k+joff]*dR[k]*0.5;

            for(ibl=0; ibl<bl_cnt; ibl++) {
                int top = blocks[ibl][1] < j
                    ? blocks[ibl][1] : j; 
                for(i=blocks[ibl][0]; i<top; i++) { 
                    real *restrict aosi = aos + i*bllen; /* ith orbital */
                    long_real s = 0;
                    for(k=blstart; k<blend; k++)
                        s += aosi[k]*tmp[k];
                    excmat.add(j,i, s);
                }
            }
            long_real s = 0;
            for(k=blstart; k<blend; k++)
                s += aos[k+j*bllen]*tmp[k];
            excmat.add(j,j, s);
        }
    }
  }
};

/** modifies data->excmat by adding LDA-type contributions from a
    given set of bllen grid points as saved in grid.
 */
template<typename Matrix, typename LDADistributor>
void
xcCallbackLdaR(DftIntegratorBl *grid, real * restrict tmp,
               int bllen, int blstart, int blend,
               KsData<Matrix>* data)
{
    FirstDrv drvs; 
    int k;
    real * restrict dR     = data->dR;
    FunDensProp dp = { 0 };
    
    assert(grid->ntypso >0);
    for(k=blstart; k<blend; k++) {
        real weight = grid->weight[grid->curr_point+k];
        dp.rhoa = dp. rhob = 0.5*grid->r.rho[k];
        data->energy += selected_func->func(&dp)*weight;
        dftpot0_(&drvs, &weight, &dp);
        dR[k] = 2*drvs.fR;
    }
    LDADistributor::distribute(grid, bllen, blstart, blend, tmp, dR,
                               *data->excmat);
}

/** distributes a GGA-type xc potential over the XC-matrix
    elements. Matrix is a type provides an operation add(row, col,
    val).
 */
template<typename Matrix>
struct XCDistributorGga {
  static void distribute(DftIntegratorBl *grid,
                         int bllen, int blstart, int blend,
                         real * restrict tmp,
                         const real *dR, const real *dZ,
                         Matrix& excmat)
  {
    static const int isym = 0;
    int jbl, j, ibl, i, k;
    const real * aox = grid->atv+bllen*grid->nbast;
    const real * aoy = grid->atv+bllen*grid->nbast*2;
    const real * aoz = grid->atv+bllen*grid->nbast*3;
    const real * aos = grid->atv;

    const int (*blocks)[2] = BASBLOCK(grid,isym);
    int nblocks = grid->bas_bl_cnt[isym];
    for(jbl=0; jbl<nblocks; jbl++)
        for(j=blocks[jbl][0]; j<blocks[jbl][1]; j++) { 
            int joff = j*bllen;
            for(k=blstart; k<blend; k++)
                tmp[k+joff] = 
                    (dR[k]* aos[k+j*bllen] +
                     dZ[k]*(aox[k+j*bllen]*grid->g.rad.a[k][0]+
                            aoy[k+j*bllen]*grid->g.rad.a[k][1]+
                            aoz[k+j*bllen]*grid->g.rad.a[k][2]));
        }
        
    for(jbl=0; jbl<nblocks; jbl++) {
        for(j=blocks[jbl][0]; j<blocks[jbl][1]; j++) { 
            const real * tmpj = tmp + j*bllen; /* jth orbital */
            for(ibl=0; ibl<nblocks; ibl++) {
                int top = blocks[ibl][1] < j
                    ? blocks[ibl][1] : j; 
                for(i=blocks[ibl][0]; i<top; i++) { 
                    long_real s = 0;
                    const real * tmpi = tmp + i*bllen; /* ith orbital */
                    for(k=blstart; k<blend; k++)
                        s += aos[k+i*bllen]*tmpj[k] +
                            aos[k+j*bllen]*tmpi[k];
                    excmat.add(i, j, s);
                }
            }
            long_real s = 0;
            for(k=blstart; k<blend; k++)
                s += 2*aos[k+j*bllen]*tmpj[k];
            excmat.add(j,j, s);
        }
    }
  }
};

/** modifies data->excmat by adding GGA-type contributions from a
    given set of bllen grid points as saved in grid.
 */
template<typename Matrix, typename GGADistributor>
void
xcCallbackGgaR(DftIntegratorBl* grid, real * restrict tmp, 
               int bllen, int blstart, int blend,
               KsData<Matrix>* data)
{
    FirstDrv drvs;
    int k;
    real * restrict dR = data->dR;
    real * restrict dZ = data->dZ;
    FunDensProp dp = { 0 };

    assert(grid->ntypso >0);
    for(k=blstart; k<blend; k++) {
        real weight = grid->weight[grid->curr_point+k];
        dp.grada = 0.5*template_blas_sqrt(grid->g.grad[k][0]*grid->g.grad[k][0]+
                                 grid->g.grad[k][1]*grid->g.grad[k][1]+
                                 grid->g.grad[k][2]*grid->g.grad[k][2]);
        dp. rhoa = dp.rhob = 0.5*grid->r.rho[k];
        dp.gradb  = dp.grada;
        dp.gradab = dp.grada*dp.gradb;
        if(dp.rhoa>1e-14) {
            if(dp.grada<1e-35) dp.grada = 1e-35;
            data->energy += selected_func->func(&dp)*weight;
            dftpot0_(&drvs, &weight, &dp);
            dR[k] = 0.5*drvs.fR;
            dZ[k] = 0.5*drvs.fZ/dp.grada;
        }else {
            dR[k] = dZ[k] = 0;
        }
    }

    GGADistributor::distribute(grid, bllen, blstart, blend, tmp, dR, dZ,
                               *data->excmat);
}

/* =================================================================== */
/* Unrestricted evaluators. */

template<typename Matrix>
struct UksData {
  Matrix *exca, *excb;
  real* dRa, *dRb;
  real* dZa, *dZb, *dZab;
  real energy;
  UksData(Matrix * a_, Matrix * b_, size_t s)
    : exca(a_), excb(b_),
      dRa(new real[s]), dRb(new real[s]),
      dZa(new real[s]), dZb(new real[s]), dZab(new real[s]),
      energy(0.0)
  {}
  ~UksData() {
    delete []dRa;    delete []dRb;
    delete []dZa;    delete []dZb;   delete []dZab;
  }
};

template<typename Matrix>
struct XCDistributorGgaU {
  static void
  distribute(DftIntegratorBl *grid, int bllen, int blstart, int blend,
             real * restrict tmp, const real * dR,
             const real *dZ1, const real (*grad1)[3],
             const real *dZ2, const real (*grad2)[3],
             Matrix& excmat);
};

template<typename Matrix>
void
XCDistributorGgaU<Matrix>::distribute(DftIntegratorBl *grid,
                                      int bllen, int blstart, int blend,
                                      real * restrict tmp, const real * dR,
                                      const real *dZ1,
                                      const real (*grad1)[3],
                                      const real *dZ2,
                                      const real (*grad2)[3],
                                      Matrix& excmat)
{
    int isym, jbl, j, ibl, i, k;
    real * restrict aox = grid->atv+bllen*grid->nbast;
    real * restrict aoy = grid->atv+bllen*grid->nbast*2;
    real * restrict aoz = grid->atv+bllen*grid->nbast*3;
    real * restrict aos = grid->atv;

    for(isym=0; isym<grid->nsym; isym++) {
        int (*restrict blocks)[2] = BASBLOCK(grid,isym);
        int nblocks = grid->bas_bl_cnt[isym];
        for(jbl=0; jbl<nblocks; jbl++)
            for(j=blocks[jbl][0]; j<blocks[jbl][1]; j++) { 
                int joff = j*bllen;
                for(k=blstart; k<blend; k++)
                    tmp[k+joff] = 
                        dR[k]* aos[k+j*bllen] +
                        dZ1[k]*(aox[k+j*bllen]*grad1[k][0]+
                                aoy[k+j*bllen]*grad1[k][1]+
                                aoz[k+j*bllen]*grad1[k][2])+
                        dZ2[k]*(aox[k+j*bllen]*grad2[k][0]+
                                aoy[k+j*bllen]*grad2[k][1]+
                                aoz[k+j*bllen]*grad2[k][2]);
        }
        
        for(jbl=0; jbl<nblocks; jbl++) {
            for(j=blocks[jbl][0]; j<blocks[jbl][1]; j++) { 
              real *restrict tmpj = tmp + j*bllen; /* jth orbital */
              for(ibl=0; ibl<nblocks; ibl++) {
//#define FULL_ONLY 1
#if defined(FULL_ONLY)
                for(i=blocks[ibl][0]; i<blocks[ibl][1]; i++) { 
                  long_real s = 0;
                  for(k=blstart; k<blend; k++)
                    s += aos[k+i*bllen]*tmpj[k];
                  excmat.add(i, j, s);
                }
#else /* FULL_ONLY */
                int top = blocks[ibl][1] < j
                  ? blocks[ibl][1] : j; 
                for(i=blocks[ibl][0]; i<top; i++) { 
                  long_real s = 0;
                  const real * tmpi = tmp + i*bllen; /* ith orbital */
                  for(k=blstart; k<blend; k++)
                    s += aos[k+i*bllen]*tmpj[k] +
                      aos[k+j*bllen]*tmpi[k];
                  excmat.add(i, j, s);                      
                }                    
#endif /* FULL_ONLY */
              }
#if !defined(FULL_ONLY)
              long_real s = 0;
              for(k=blstart; k<blend; k++)
                s += 2*aos[k+j*bllen]*tmpj[k];
              excmat.add(j,j, s);
#endif /* FULL_ONLY */
            }
        }
    }
}

/** modifies data->excmat by adding LDA-type xc contributions, for a
    general unrestricted case. Matrix is a type that provides an
    operation add(row, col, val). */
template<typename Matrix, typename LDADistributor>
void
xcCallbackLdaU(DftIntegratorBl *grid, real * restrict tmp,
               int bllen, int blstart, int blend,
               UksData<Matrix>* d)
{
    FunFirstFuncDrv drvs; 
    FunDensProp dp = { 0 };
    int k;

    assert(grid->ntypso >0);
    for(k=blstart; k<blend; k++) {
        real weight = grid->weight[grid->curr_point+k];
        dp.rhoa = grid->r.ho.a[k];
        dp.rhob = grid->r.ho.b[k];
        d->energy += selected_func->func(&dp)*weight;
        drv1_clear(&drvs);
        selected_func->first(&drvs, weight, &dp);
        d->dRa[k] = 2*drvs.df1000;
        d->dRb[k] = 2*drvs.df0100;
    }

    LDADistributor::distribute(grid, bllen, blstart, blend,
                               tmp, d->dRa, *d->exca);
    LDADistributor::distribute(grid, bllen, blstart, blend,
                               tmp, d->dRb, *d->excb);
}

/** modifes data->excmat by adding GGA-type xc contributions, for a
    general unrestricted case. Matrix is a type that provides an
    operation add(row, col, val). */
template<typename Matrix, typename GGADistributor>
static void
xcCallbackGgaU(DftIntegratorBl* grid, real * restrict tmp, 
               int bllen, int blstart, int blend,
               UksData<Matrix>* d)
{
    FunFirstFuncDrv drvs; 
    int k;
    FunDensProp dp = { 0 };

    assert(grid->ntypso >0);
    for(k=blstart; k<blend; k++) {
        const real THR = 1e-40;
        real weight = grid->weight[grid->curr_point+k];
        dp.rhoa = grid->r.ho.a[k];
        dp.rhob = grid->r.ho.b[k];
        dp.grada = template_blas_sqrt(grid->g.rad.a[k][0]*grid->g.rad.a[k][0]+
                             grid->g.rad.a[k][1]*grid->g.rad.a[k][1]+
                             grid->g.rad.a[k][2]*grid->g.rad.a[k][2]);
        dp.gradb = template_blas_sqrt(grid->g.rad.b[k][0]*grid->g.rad.b[k][0]+
                             grid->g.rad.b[k][1]*grid->g.rad.b[k][1]+
                             grid->g.rad.b[k][2]*grid->g.rad.b[k][2]);
        dp.gradab = grid->g.rad.a[k][0]*grid->g.rad.b[k][0]+
            grid->g.rad.a[k][1]*grid->g.rad.b[k][1]+
            grid->g.rad.a[k][2]*grid->g.rad.b[k][2];
        if(dp.rhoa+dp.rhob>1e-17) {
            if(dp.grada<THR) dp.grada = THR;
            if(dp.rhob<THR) dp.rhob = THR;
            if(dp.gradb<THR) dp.gradb = THR;
            if(dp.gradab<THR) dp.gradab = THR;
            d->energy += selected_func->func(&dp)*weight;
            drv1_clear(&drvs);
            selected_func->first(&drvs, weight, &dp);
            d->dRa[k]  = drvs.df1000*0.5;
            d->dRb[k]  = drvs.df0100*0.5;
            d->dZa[k]  = drvs.df0010/dp.grada;
            d->dZb[k]  = drvs.df0001/dp.gradb;
            d->dZab[k] = drvs.df00001;
        } else {
            d->dRa[k] = d->dRb[k] = d->dZa[k] = d->dZb[k] = d->dZab[k] = 0;
        }
    }

    GGADistributor::distribute(grid, bllen, blstart, blend, tmp, d->dRa,
                               d->dZa, grid->g.rad.a, d->dZab,
                               grid->g.rad.b, *d->exca);
    GGADistributor::distribute(grid, bllen, blstart, blend, tmp, d->dRb,
                               d->dZb, grid->g.rad.b, d->dZab,
                               grid->g.rad.a, *d->excb);
}