1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file ergo_scripted.cc
@brief The main program for the ergo project. It enables
scripting and more complex input forms.
@author: Pawel Salek <em>responsible</em>. But feel free to modify
the file if you are humbly convinced your ideas are correct.
*/
/* Copyright(c) Pawel Salek 2006. */
#include <dirent.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory>
#include <string>
#include <list>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/times.h>
#include <errno.h>
#include <sstream>
#ifdef _OPENMP
#include <omp.h>
#endif
#ifdef USE_CHUNKS_AND_TASKS
#include "chunks_and_tasks.h"
#include "registration.h"
#endif
#include "atom_labels.h"
#include "density_description_file.h"
#include "ergo_scripted.h"
#include "grid_reader.h"
#include "dft_common.h"
#include "lin_trans.h"
#include "integrals_2el.h"
#include "integrals_2el_explicit.h"
#include "integrals_2el_boxed.h"
#include "integrals_2el_K.h"
#include "integrals_2el_J.h"
#include "integrals_general.h"
#include "operator_matrix.h"
#include "memorymanag.h"
#include "molecule.h"
#include "output.h"
#include "scf.h"
#include "scf_utils.h"
#include "slr.h"
#include "matrix_utilities.h"
#include "SCF_restricted.h"
#include "SCF_unrestricted.h"
#include "units.h"
#include "ci.h"
#include "license.h"
#include "xyz_file_parser.h"
#include "electron_dynamics.h"
#include "tdhf_dynamics.h"
// ELIAS NOTE 2014-07-14: define SKIP_UNOFFICIAL_INPUT_PARAMS for "official" releases of the code, so that some testing/debugging parameters are skipped.
#define SKIP_UNOFFICIAL_INPUT_PARAMS
static void variable_free(struct variable* v);
/** An object representing the state of the input processor. A way to
* initialize state and to cleanly shut it down and release memory
* is provided. */
class Ergo {
public:
static const int NO_OF_BASIS_SET_RANGES = 3;
struct variable* var_list;
struct variable* J_K_params;
struct variable* lr_params;
struct variable* ed_params;
struct variable* mat_params;
struct variable* scf_params;
struct variable* XC_params;
struct variable* output_params;
Molecule molecule;
Molecule ghostMolecule;
Molecule extraChargesMolecule;
ergo_real moleculeUnit; /**< the distance unit for inline molecule
input. */
enum MolType readingMoleculeClass; /**< tells which inline molecule we are
reading now: main or ghost. */
JK::Params jkOptions;
SCF::Options scfOptions;
SCF::MatOptions matOptions;
ED::Params edOptions; /* Electron dynamics (ED) options. */
void registerInputVariables();
char *Basis; /**< name of the current basis set. */
char *GhostBasis; /**< name of the ghost basis set. */
BasissetNameRange basissetRangeList[NO_OF_BASIS_SET_RANGES];
BasissetNameRange basissetRangeListGhost[NO_OF_BASIS_SET_RANGES];
Ergo() : Basis(NULL), GhostBasis(NULL) {
memset(basissetRangeList, 0, NO_OF_BASIS_SET_RANGES * sizeof(BasissetNameRange));
memset(basissetRangeListGhost, 0, NO_OF_BASIS_SET_RANGES * sizeof(BasissetNameRange));
}
~Ergo() {
if(Basis)
ergo_free(Basis);
if(GhostBasis)
ergo_free(GhostBasis);
variable_free(var_list); /* This one owns the data. Other ones are
* just helpers... */
}
};
static Ergo ergo;
/** Molecule stores geometry of the current molecule. */
static IntegralInfo* ergoIntegralInfo = NULL;
static BasisInfoStruct* Basis_info = NULL;
/* End of static variable block. */
/** Macro for compact expression of recognized keywords. We make some
effort to convert all the floating-point default values to double
type so that they can be passed through the stack without
problem. The only potential problem is a potential loss of
precision if sizeof(ergo_real) > sizeof(double) but this we can
hopefully live with for input variables, can we? */
#define KW(kl,vname, type, defval, desc) \
kl = variable_new_ ##type(kl, (type), (#vname), (desc), (defval))
#define variable_new_VAR_STRING variable_new
#define variable_new_VAR_FLOAT(kl,t,n,h,v) variable_new(kl,t,n,h,double(v))
#define variable_new_VAR_INT variable_new
#define variable_new_VAR_LIST variable_new
/** creates new variable item. Such variable can be later assigned
values etc.
@param tail is a tail of the variable list, allowing easy variable
list creation.
@param type is the variable type (string, int, or float).
@param name is the variable name.
@param description is a string with a few sentences describing what the variable is for.
*/
static struct variable*
variable_new(struct variable* tail, enum VarType type, const char *name, const char *description, ...)
{
struct variable * v = ergo_new(1, struct variable);
va_list ap;
/* The second argument to va_start is the name of the last argument
before the variable argument list, that is, the last argument of
which the calling function knows the type. In this case, that is
the variable called "description". */
va_start(ap, description);
v->next = tail;
v->name = name;
v->description = description;
v->type = type;
switch(type) {
case VAR_STRING: v->v.str = strdup(va_arg(ap, char *)); break;
case VAR_FLOAT: v->v.num = va_arg(ap, double); break;
case VAR_INT: v->v.vint = va_arg(ap, int); break;
case VAR_LIST: v->v.list = va_arg(ap, struct variable*); break;
default: do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "unknown variable type %d\n", type);
}
va_end(ap);
return v;
}
/** release variable data structure and its children. */
static void
variable_free(struct variable* v)
{
switch(v->type) {
case VAR_STRING: free(v->v.str); break;
case VAR_FLOAT: break;
case VAR_INT: break;
case VAR_LIST: variable_free(v->v.list); break;
default: do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"unknown variable type %d\n", v->type);
}
if(v->next)
variable_free(v->next);
ergo_free(v);
}
/** es_assign_num assigns given numerical value to the variable. */
void
es_assign_num(struct variable *v, double val)
{
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, " %s := %g\n", v->name, val);
switch(v->type) {
case VAR_FLOAT: v->v.num = val; break;
case VAR_INT: v->v.vint = (int)val; break;
default:
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Assignment of numerical value to nonnumerical "
"variable %s ignored.\n", v->name);
}
}
/** es_assign_str assigns given string to the variable. It
additionally clears some local variables if a value is assigned to
one of the "special" variables like "output_basis or "basis". */
void
es_assign_str(struct variable *v, const char *str)
{
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, " %s := %s\n", v->name, str);
if(v->v.str) free(v->v.str);
v->v.str = strdup(str);
/* FIXME: move the following code to a modify callback. */
if( Basis_info && (strcmp(v->name, "output_basis") == 0 ||
strcmp(v->name, "basis") == 0 ||
strcmp(v->name, "ghost_basis") == 0) ) {
delete Basis_info;
Basis_info = NULL;
}
if(strcmp(v->name, "basis") == 0) {
if(ergo.Basis) free(ergo.Basis);
ergo.Basis = strdup(str);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Basis really set to %s\n",
ergo.Basis);
} else if(strcmp(v->name, "ghost_basis") == 0) {
if(ergo.GhostBasis) free(ergo.GhostBasis);
ergo.GhostBasis = strdup(str);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Ghost basis really set to %s\n",
ergo.GhostBasis);
}
}
/** Defines a range of atoms that will be assigned a specific basis set.
The range can be reset by specifying a empty count.
@param mt chooses main or the ghost molecule.
@param rangeNo choose the range to be assigned (1 to 3).
@param start the start index.
@param cnt the count of atoms in the range.
@param name the name of the basis set file.
*/
int
es_assign_range(MolType mt, int rangeNo,
int start, int cnt, const char *name)
{
if(rangeNo <1 || rangeNo > Ergo::NO_OF_BASIS_SET_RANGES)
return false;
BasissetNameRange *bnrs;
switch(mt) {
case MOL_MAIN: bnrs = ergo.basissetRangeList; break;
case MOL_GHOST: bnrs = ergo.basissetRangeListGhost; break;
default: return false;
}
--rangeNo;
printf("Assigning range %s %d [%d:%d] = %s\n",
mt == MOL_MAIN ? "MAIN" : "GHOST",
rangeNo, start, start+cnt-1, name);
bnrs[rangeNo].startAtomIndex = start;
bnrs[rangeNo].count = cnt;
if (bnrs[rangeNo].basisSetFileName)
free(bnrs[rangeNo].basisSetFileName);
if(name && *name)
bnrs[rangeNo].basisSetFileName = strdup(name);
else
bnrs[rangeNo].basisSetFileName = NULL;
return true;
}
/** finds the variable struct by @param name starting in the specified
root. @param root must be of type VAR_LIST. */
struct variable*
es_find_var(struct variable *root, const char *name)
{
struct variable *res;
if(root) {
if(root->type == VAR_LIST)
res = root->v.list;
else res = root;
} else res = ergo.var_list;
const char* dot_pos = strchr(name, '.');
size_t l = dot_pos ? dot_pos-name : strlen(name);
while(res && (strncmp(res->name, name, l) || l != strlen(res->name)) ) {
res = res->next;
}
if(!res) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Variable %s not found.\n", name);
}
if(res && dot_pos) {
return (res->type == VAR_LIST)
? es_find_var(res->v.list, dot_pos+1) : NULL;
}
else return res;
}
static inline int
var_get_int_template(struct variable *root, const char *name)
{
struct variable *v = es_find_var(root, name);
if(v && v->type == VAR_INT)
return v->v.vint;
else {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Undefined integer variable %s\n", name);
return -12345;
}
}
static inline double
var_get_real_template(struct variable *root, const char *name)
{
struct variable *v = es_find_var(root, name);
if (v && v->type == VAR_FLOAT)
return v->v.num;
else {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Undefined real variable: %s\n", name);
return -123456.0;
}
}
static inline const char*
var_get_string(struct variable *root, const char *name)
{
struct variable *v = es_find_var(root, name);
return (v && v->type == VAR_STRING) ? v->v.str : "";
}
#define var_get_int(n) var_get_int_template(NULL, (n))
#define var_get_intJK(n) var_get_int_template(ergo.J_K_params, (n))
#define var_get_intLR(n) var_get_int_template(ergo.lr_params, (n))
#define var_get_intED(n) var_get_int_template(ergo.ed_params, (n))
#define var_get_intMA(n) var_get_int_template(ergo.mat_params, (n))
#define var_get_intOU(n) var_get_int_template(ergo.output_params, (n))
#define var_get_intSCF(n) var_get_int_template(ergo.scf_params, (n))
#define var_get_intXC(n) var_get_int_template(ergo.XC_params, (n))
#define var_get_real(n) var_get_real_template(NULL, (n))
#define var_get_realJK(n) var_get_real_template(ergo.J_K_params, (n))
#define var_get_realLR(n) var_get_real_template(ergo.lr_params, (n))
#define var_get_realED(n) var_get_real_template(ergo.ed_params, (n))
#define var_get_realMA(n) var_get_real_template(ergo.mat_params, (n))
#define var_get_realOU(n) var_get_real_template(ergo.output_params, (n))
#define var_get_realSCF(n) var_get_real_template(ergo.scf_params, (n))
#define var_get_realXC(n) var_get_real_template(ergo.XC_params, (n))
#define var_get_stringLR(n) var_get_string(ergo.lr_params, (n))
#define var_get_stringED(n) var_get_string(ergo.ed_params, (n))
#define var_get_stringSCF(n) var_get_string(ergo.scf_params, (n))
#define var_get_stringOU(n) var_get_string(ergo.output_params, (n))
#define var_get_stringXC(n) var_get_string(ergo.XC_params, (n))
static void
var_print_tree(struct variable *tree, FILE *f, int indent)
{
for(;tree; tree = tree->next) {
for(int i=0; i<indent; i++) fputc(' ', f);
switch(tree->type) {
case VAR_STRING:
fprintf(f, "STRING: %s = \"%s\"\n", tree->name,
tree->v.str ? tree->v.str : "(empty)");
break;
case VAR_FLOAT:
fprintf(f, "FLOAT : %s = %g\n", tree->name, tree->v.num);
break;
case VAR_INT:
fprintf(f, "INT : %s = %d\n", tree->name, tree->v.vint);
break;
case VAR_LIST:
fprintf(f, "LIST : %s\n", tree->name);
var_print_tree(tree->v.list, f, indent+3);
}
}
}
/** starts processing the inline molecule input. Call to this routine
should be followed by calls to es_add_atom and es_mol_commit.
@param moleculeClass selects the main molecule (MOL_MAIN) or the ghost
molecule (MOL_GHOST).
*/
void
es_mol_begin(enum MolType moleculeClass) {
ergo.moleculeUnit = 1;
ergo.readingMoleculeClass = moleculeClass;
switch(moleculeClass) {
case MOL_MAIN: ergo.molecule.clear(); break;
case MOL_GHOST: ergo.ghostMolecule.clear(); break;
default: assert(0);
}
if(Basis_info) {
delete Basis_info;
Basis_info = NULL;
}
}
/** adds single atom at given coordinates and given name. The charge
is specified currently by the name of the element. */
void
es_add_atom(const char *name, double x, double y, double z)
{
Molecule *m;
switch(ergo.readingMoleculeClass) {
case MOL_MAIN: m = &ergo.molecule; break;
case MOL_GHOST: m = &ergo.ghostMolecule; break;
default: assert(0);
}
ergo_real charge = get_charge_int_from_atom_label(name);
m->addAtom(charge,
x*ergo.moleculeUnit,
y*ergo.moleculeUnit,
z*ergo.moleculeUnit);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "%s (charge=%3.1f) %f %f %f", name,
(double)charge,
(double)(x*ergo.moleculeUnit),
(double)(y*ergo.moleculeUnit),
(double)(z*ergo.moleculeUnit));
}
/** Finish the inline definition of the molecule. */
void
es_mol_commit(void)
{
printf("Inline %s molecule with %d atoms.\n",
ergo.readingMoleculeClass == MOL_GHOST ? "ghost" : "main",
ergo.readingMoleculeClass == MOL_GHOST
? ergo.ghostMolecule.getNoOfAtoms() : ergo.molecule.getNoOfAtoms());
}
/** Selects the units for the inline molecule format to be Angtroms,
as opposed to default atomic units. */
void
es_mol_unit_angstrom(void)
{
ergo.moleculeUnit = UNIT_one_Angstrom;
}
/** reads molecule data in the MOLECULE.INP (Dalton) or XYZ format.
@param fname contains the file name to be opened and read.
@param moleculeClass determines whether it is the main molecule
(MOL_MAIN) or the ghost molecule (MOL_GHOST) to be read.
*/
int
es_mol_read_molecule(const char *fname, enum MolType moleculeClass)
{
char *basissetfile = NULL;
Molecule *m;
char **basisFileName;
switch(moleculeClass) {
case MOL_MAIN:
m = &ergo.molecule; basisFileName = &ergo.Basis;
break;
case MOL_GHOST:
m = &ergo.ghostMolecule; basisFileName = &ergo.GhostBasis;
break;
default: assert(0);
}
int res = m->setFromMoleculeFile(fname,
0, /* we are guessing the net charge here */
&basissetfile);
if(basissetfile) {
if(!*basisFileName) {
*basisFileName = basissetfile;
do_output(LOG_CAT_INFO, LOG_AREA_MAIN,
"Setting the Basis from the MOLECULE file to %s\n",
*basisFileName);
} else {
ergo_free(basissetfile);
}
}
if(Basis_info) {
delete Basis_info;
Basis_info = NULL;
}
return res;
}
int
es_set_nthreads(int nThreads)
{
const char *thread_counters[] = {
"J_K.threads_J", "J_K.threads_K",
"mat.threads", "scf.no_of_threads_for_V"
};
for(unsigned i=0; i<sizeof(thread_counters)/sizeof(thread_counters[0]); i++) {
struct variable *var = es_find_var(NULL, thread_counters[i]);
if(!var) printf("Not found %s\n", thread_counters[i]);
else es_assign_num(var, nThreads);
}
#ifdef _OPENMP
omp_set_num_threads(nThreads);
#else
// If not compiled with OpenMP, the matrix library can only use one
// thread. Therefore, set mat.threads to 1 in this case.
struct variable *var = es_find_var(NULL, "mat.threads");
if(!var) printf("Not found %s\n", "mat.threads");
else es_assign_num(var, 1);
#endif
dft_set_num_threads(nThreads);
return 0;
}
int
es_set_nthreads_string(const char *str)
{
bool doDetect = strcasecmp(str, "detect") == 0;
if(strcasecmp(str, "env") == 0 || doDetect) {
const char *env = getenv("OMP_NUM_THREADS");
int defThreads = 1;
if ( !(env && (defThreads=atoi(env)) > 0) ) {
if(doDetect) {
FILE *f = fopen("/proc/cpuinfo", "rt");
if(f) {
char line[256];
defThreads = 0;
while(fgets(line, sizeof(line), f))
if(strncmp(line, "processor", 9) == 0)
defThreads++;
fclose(f);
/* Protect against case when /proc/cpuinfo exits but
contains garbage. Unlikely but possible. */
if(defThreads == 0)
defThreads = 1;
}
}
}
es_set_nthreads(defThreads);
return 0;
} else
return -1;
}
static void
jkparams_set_from_vars(JK::Params& jkp)
{
JK::Params empty;
jkp = empty;
jkp.threshold_J = var_get_realJK("threshold_2el_J");
jkp.threshold_K = var_get_realJK("threshold_2el_K");
jkp.multipole_threshold_factor = var_get_realJK("multipole_threshold_factor");
#ifndef SKIP_UNOFFICIAL_INPUT_PARAMS
jkp.use_differential_density = var_get_intJK("use_differential_density");
#endif
jkp.use_fmm = var_get_intJK("use_fmm");
jkp.fmm_box_size = var_get_realJK("fmm_box_size");
jkp.fmm_no_of_branches = var_get_intJK("fmm_no_of_branches");
jkp.fmm_branch_splitter_extent_1 = var_get_realJK("fmm_branch_splitter_extent_1");
jkp.fmm_branch_splitter_extent_2 = var_get_realJK("fmm_branch_splitter_extent_2");
jkp.fmm_branch_splitter_extent_3 = var_get_realJK("fmm_branch_splitter_extent_3");
jkp.fmm_branch_splitter_extent_4 = var_get_realJK("fmm_branch_splitter_extent_4");
jkp.fmm_branch_splitter_extent_5 = var_get_realJK("fmm_branch_splitter_extent_5");
jkp.exchange_box_size = var_get_realJK("exchange_box_size");
jkp.noOfThreads_J = var_get_intJK("threads_J");
jkp.noOfThreads_K = var_get_intJK("threads_K");
jkp.use_naive_fockmat_constr = var_get_intJK("use_naive_fockmat_constr");
}
void
es_print_help()
{
var_print_tree(ergo.var_list, stdout, 0);
printf("\nAvailable commands:\n"
"help\n"
"molecule [ghost] \"FILENAME\"\n"
"molecule_inline [Angstrom]\n"
"ghost_inline [Angstrom]\n"
"range NUM = START COUNT \"BASIS-SET\"\n"
"run \"METHOD\", METHOD=HF or a DFT functional\n"
"system \"CMD\"\n"
"warranty\n"
"precision\n"
"list_dft_funcs\n"
"is_cht_used\n"
"quit\n"
"get_excited_state \"METHOD\" NO_OF_STATES\n"
"get_polarisability \"METHOD\" \"[XYZ]\" FREQUENCY\n"
"get_polarisability \"METHOD\" all FREQUENCY\n"
"set_nthreads(N) where N is a number\n"
"set_nthreads(\"env\") uses OMP_NUM_THREADS to set the thread count\n"
"set_nthreads(\"detect\") uses OMP_NUM_THREADS, or hardware info.\n");
}
void
es_print_help_var(const struct variable *var)
{
printf("%s: %s\n", var->name, var->description);
}
void
es_print_list_dft_funcs()
{
dftlistfuncs_();
dftlistfuncs_using_printf_();
}
void
es_print_is_cht_used()
{
#ifdef USE_CHUNKS_AND_TASKS
const char * messageString = "chunks_and_tasks_is_used";
#else
const char * messageString = "chunks_and_tasks_is_not_used";
#endif
puts(messageString);
}
/** Print precision that was selected for building the program. */
void
es_print_precision()
{
#ifdef PRECISION_SINGLE
const char *precision = "single";
#elif defined(PRECISION_LONG_DOUBLE)
const char *precision = "long_double";
#elif defined(PRECISION_QUAD_FLT128)
const char *precision = "quad_flt128";
#else
const char *precision = "double";
#endif
puts(precision);
}
static int
es_rmdir_with_content(const char *dirname)
{
DIR * dir = opendir(dirname);
struct dirent *dp;
if(!dir) return -1;
std::list<std::string> filesToRemove;
while ( (dp=readdir(dir)) ) {
filesToRemove.push_front(dp->d_name);
}
closedir(dir);
for(std::list<std::string>::const_iterator i=filesToRemove.begin();
i != filesToRemove.end(); ++i) {
std::string fname(dirname);
fname.append(1, '/');
fname.append(*i);
if (unlink(fname.c_str()) != 0)
return -1;
}
return rmdir(dirname);
}
/** called when an actual calculation is to be commenced. @param mode
is the first specified keyword. Some calculation types - like
response ones - require the Fock matrix. @param save_pot tells
whether saving it is required: The save_final_potential
configuration parameter will be overriden if save_pot is true.
*/
int
es_run(const char *mode, int save_pot)
{
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "running %s\n", mode);
if(!ergoIntegralInfo)
ergoIntegralInfo = new IntegralInfo(true);
if(var_get_int("enable_memory_usage_output"))
enable_memory_usage_output();
if(var_get_int("rand_seed")) {
int seed = var_get_int("rand_seed");
do_output(LOG_CAT_INFO, LOG_AREA_MAIN,
"es_run: calling srand() with seed %9d.",
seed);
srand(seed);
}
if (ergo.molecule.getNumberOfElectrons() <= 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"es_run: no electrons found. Number of atoms: %d",
ergo.molecule.getNoOfAtoms());
return -1;
}
if(!Basis_info) {
int output_basis = var_get_int("output_basis");
int use_6_d_funcs = var_get_int("use_6_d_functions");
Basis_info = new BasisInfoStruct(use_6_d_funcs);
const int do_basis_normalization = 1;
// ELIAS NOTE 2019-04-28: Alexey Akimov asked about this, it seems
// like it would be a good idea to add an input option allowing
// the user to choose skip_sort_shells value (0 or 1).
// ELIAS FIXME TODO: add input option for skip_sort_shells
const int skip_sort_shells = 0;
if(ergo.Basis != NULL) {
// We skip adding basis functions here if the special basis set string "none" is given.
if(strcmp(ergo.Basis, "none") != 0) {
if(Basis_info->addBasisfuncsForMolecule(ergo.molecule,
ergo.Basis,
Ergo::NO_OF_BASIS_SET_RANGES,
ergo.basissetRangeList,
*ergoIntegralInfo,
output_basis,
do_basis_normalization,
skip_sort_shells) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"error in basisInfo->add_basisfuncs_for_molecule "
"for main basis set, Basis='%s'",
ergo.Basis);
return -1;
}
}
}
if(ergo.ghostMolecule.getNoOfAtoms() > 0 &&
Basis_info->addBasisfuncsForMolecule(ergo.ghostMolecule,
ergo.GhostBasis,
Ergo::NO_OF_BASIS_SET_RANGES,
ergo.basissetRangeListGhost,
*ergoIntegralInfo,
output_basis,
do_basis_normalization,
skip_sort_shells) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"error in basisInfo->add_basisfuncs_for_molecule "
"for ghost basis set, Basis='%s'",
ergo.GhostBasis);
return -1;
}
} /* else reuse basis info since none of the geometry, Basis
* has changed. */
if(Basis_info->noOfBasisFuncs<1)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Cannot proceed: No basis functions defined.");
return -1;
}
SCF::Options& scf = ergo.scfOptions;
scf.calculation_identifier = var_get_stringSCF("calculation_identifier");
scf.method_and_basis_set = std::string(mode) + "/" + std::string(ergo.Basis);
scf.electric_field.v[0] = var_get_realSCF("electric_field_x");
scf.electric_field.v[1] = var_get_realSCF("electric_field_y");
scf.electric_field.v[2] = var_get_realSCF("electric_field_z");
scf.sparse_threshold_for_S = var_get_realSCF("sparse_threshold_for_S");
scf.sparse_threshold_for_Z = var_get_realSCF("sparse_threshold_for_Z");
scf.convergence_threshold = var_get_realSCF("convergence_threshold");
scf.step_length_start = var_get_realSCF("step_length_start");
scf.step_length_giveup = var_get_realSCF("step_length_giveup");
scf.error_maxabs_for_diis = var_get_realSCF("error_maxabs_for_diis");
scf.starting_guess_disturbance = var_get_realSCF("starting_guess_disturbance");
scf.purification_subspace_err_limit = var_get_realSCF("purification_subspace_err_limit");
scf.purification_with_acceleration = var_get_intSCF("purification_with_acceleration");
scf.puri_eig_acc_factor_for_guess = var_get_realSCF("puri_eig_acc_factor_for_guess");
scf.gap_expected_lower_bound = var_get_realSCF("gap_expected_lower_bound");
scf.shift_using_prev_density_matrix = var_get_realSCF("shift_using_prev_density_matrix");
scf.electronic_temperature = var_get_realSCF("electronic_temperature");
scf.purification_truncation_norm = mat::getNormType( var_get_stringSCF("purification_truncation_norm") );
scf.purification_stop_crit_norm = mat::getNormType( var_get_stringSCF("purification_stop_crit_norm") );
scf.break_on_energy_increase = var_get_intSCF("break_on_energy_increase");
scf.create_basis_func_coord_file = var_get_intSCF("create_basis_func_coord_file");
scf.use_prev_vector_as_initial_guess = var_get_intSCF("use_prev_vector_as_initial_guess");
scf.output_homo_and_lumo_eigenvectors = var_get_intSCF("output_homo_and_lumo_eigenvectors");
scf.number_of_occupied_eigenvectors = var_get_intSCF("number_of_occupied_eigenvectors");
scf.number_of_unoccupied_eigenvectors = var_get_intSCF("number_of_unoccupied_eigenvectors");
scf.go_back_X_iter_proj_method = var_get_intSCF("go_back_X_iter_proj_method");
scf.jump_over_X_iter_proj_method = var_get_intSCF("jump_over_X_iter_proj_method");
scf.eigensolver_accuracy = var_get_realSCF("eigensolver_accuracy");
scf.eigensolver_maxiter = var_get_intSCF("eigensolver_maxiter");
scf.eigenvectors_method = var_get_stringSCF("eigenvectors_method");
scf.purification_maxmul = var_get_intSCF("purification_maxmul");
scf.create_mtx_file_S = var_get_intSCF("create_mtx_file_S");
scf.create_mtx_file_H_core = var_get_intSCF("create_mtx_file_H_core");
scf.create_mtx_files_F = var_get_intSCF("create_mtx_files_F");
scf.create_mtx_files_D = var_get_intSCF("create_mtx_files_D");
scf.create_mtx_files_dipole = var_get_intSCF("create_mtx_files_dipole");
scf.create_mtx_files_S_and_quit = var_get_intSCF("create_mtx_files_S_and_quit");
scf.create_2el_integral_m_file = var_get_intSCF("create_2el_integral_m_file");
scf.force_restricted = var_get_intSCF("force_restricted");
scf.force_unrestricted = var_get_intSCF("force_unrestricted");
scf.max_no_of_diis_matrices = var_get_intSCF("max_no_of_diis_matrices");
scf.max_restart_count = var_get_intSCF("max_restart_count");
scf.min_number_of_iterations = var_get_intSCF("min_number_of_iterations");
scf.max_number_of_iterations = var_get_intSCF("max_number_of_iterations");
scf.no_of_careful_first_scf_steps = var_get_intSCF("no_of_careful_first_scf_steps");
scf.do_report_density_diff = var_get_intSCF("do_report_density_diff");
scf.no_of_impr_req_for_diis = var_get_intSCF("no_of_impr_req_for_diis");
scf.no_of_threads_for_V = var_get_intSCF("no_of_threads_for_V");
scf.box_size_for_V_and_T = var_get_realSCF("box_size_for_V_and_T");
scf.output_density_at_every_step = var_get_intSCF("output_density_at_every_step");
scf.save_final_potential = var_get_intSCF("save_final_potential")
|| save_pot;
scf.use_diagonalization = var_get_intSCF("use_diagonalization");
scf.use_diag_on_error = var_get_intSCF("use_diag_on_error");
scf.use_diag_on_error_guess = var_get_intSCF("use_diag_on_error_guess");
scf.purification_ignore_failure = var_get_intSCF("purification_ignore_failure");
scf.store_all_eigenvalues_to_file = var_get_intSCF("store_all_eigenvalues_to_file");
scf.output_mulliken_pop = var_get_intSCF("output_mulliken_pop");
scf.output_expected_values_pos_operator = var_get_intSCF("output_expected_values_pos_operator");
scf.output_density_images = var_get_intSCF("output_density_images");
scf.output_density_images_only = var_get_intSCF("output_density_images_only");
scf.output_density_images_boxwidth = var_get_realSCF("output_density_images_boxwidth");
scf.compute_gradient_fixeddens = var_get_intSCF("compute_gradient_fixeddens");
scf.verify_gradient_fixeddens = var_get_intSCF("verify_gradient_fixeddens");
#ifndef SKIP_UNOFFICIAL_INPUT_PARAMS
scf.do_f_thresh_verification = var_get_intSCF("do_f_thresh_verification");
scf.output_statistics_mfiles = var_get_intSCF("output_statistics_mfiles");
scf.do_acc_scan_J = var_get_intSCF("do_acc_scan_J");
scf.do_acc_scan_K = var_get_intSCF("do_acc_scan_K");
scf.do_acc_scan_Vxc = var_get_intSCF("do_acc_scan_Vxc");
scf.scan_no_of_steps = var_get_intSCF("scan_no_of_steps");
scf.scan_start_thresh = var_get_realSCF("scan_start_thresh");
scf.scan_step_factor = var_get_realSCF("scan_step_factor");
scf.write_guess_density_only = var_get_intSCF("write_guess_density_only");
scf.compute_core_density = var_get_intSCF("compute_core_density");
scf.no_of_core_electrons = var_get_intSCF("no_of_core_electrons");
scf.skip_H_core = var_get_intSCF("skip_H_core");
scf.purification_create_m_files = var_get_intSCF("purification_create_m_files");
scf.purification_use_rand_perturbation_for_alleigsint = var_get_intSCF("purification_use_rand_perturbation_for_alleigsint");
#ifdef USE_CHUNKS_AND_TASKS
scf.cht_leavesSizeMax = var_get_intSCF("cht_leavesSizeMax");
scf.cht_blocksize = var_get_intSCF("cht_blocksize");
#endif
scf.purification_eigvalue_err_limit = var_get_realSCF("purification_eigvalue_err_limit");
scf.create_checkpoints = var_get_intSCF("create_checkpoints");
scf.checkpoint_IDstr = var_get_stringSCF("checkpoint_IDstr");
scf.use_new_stopping_criterion = var_get_intSCF("use_new_stopping_criterion");
scf.try_eigv_on_next_iteration_if_fail = var_get_intSCF("try_eigv_on_next_iteration_if_fail");
scf.puri_compute_eigv_in_each_iteration = var_get_intSCF("puri_compute_eigv_in_each_iteration");
scf.run_shift_and_square_method_on_F = var_get_intSCF("run_shift_and_square_method_on_F");
scf.save_permuted_F_matrix_in_bin = var_get_intSCF("save_permuted_F_matrix_in_bin");
scf.eigenvectors_iterative_method = var_get_stringSCF("eigenvectors_iterative_method");
#endif
scf.write_overlap_matrix = var_get_intSCF("write_overlap_matrix");
scf.use_simple_dense_H_core = var_get_intSCF("use_simple_dense_H_core");
scf.use_diis_always = var_get_intSCF("use_diis_always");
scf.use_simple_starting_guess = var_get_int("use_simple_starting_guess");
scf.use_dft = mode && strcmp(mode, "HF") != 0
? (var_get_intXC("sparse_mode") ? 2 : 1) : 0;
jkparams_set_from_vars(ergo.jkOptions);
ED::Params& ed = ergo.edOptions;
ed.max_time = var_get_realED("max_time");
ed.timestep = var_get_realED("timestep");
ed.dc_pulse_strength = var_get_realED("dc_pulse_strength");
ed.dc_pulse_time = var_get_realED("dc_pulse_time");
ed.ac_pulse_max = var_get_realED("ac_pulse_max");
ed.ac_pulse_omega = var_get_realED("ac_pulse_omega");
ed.field_type = var_get_stringED("field_type");
ergo.molecule.setNetCharge(var_get_int("charge"));
int alpha_beta_diff = var_get_int("spin_polarization");
if( (ergo.molecule.getNumberOfElectrons()-alpha_beta_diff)%2) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Incompatible values for charge and spin_polarization"
" settings.");
return -1;
}
SCF::OutputOptions outputOptions;
ergo.matOptions.threshold_inch =
var_get_realMA("threshold_inch");
ergo.matOptions.sparse_threshold =
var_get_realMA("sparse_threshold");
ergo.matOptions.sparse_matrix_block_size =
var_get_intMA("sparse_matrix_block_size");
ergo.matOptions.sparse_matrix_block_factor_1 =
var_get_intMA("sparse_matrix_block_factor_1");
ergo.matOptions.sparse_matrix_block_factor_2 =
var_get_intMA("sparse_matrix_block_factor_2");
ergo.matOptions.sparse_matrix_block_factor_3 =
var_get_intMA("sparse_matrix_block_factor_3");
ergo.matOptions.threads = var_get_intMA("threads");
ergo.matOptions.parallelLevel = var_get_intMA("parallelLevel");
ergo.matOptions.use_allocator_manager =
var_get_intMA("use_allocator_manager");
ergo.matOptions.no_of_buffers_per_allocator = var_get_intMA("no_of_buffers_per_allocator");
ergo.matOptions.prepare(*Basis_info);
const char *tmpdir = var_get_string(NULL, "tmpdir");
std::string subdir(tmpdir);
if(var_get_intMA("write_to_file")) {
subdir.append("/ergo_");
char buf[20];
snprintf(buf, sizeof(buf), "%i", getpid());
subdir.append(buf);
const char *matrixDir = subdir.c_str();
if(mkdir(matrixDir, 0777) != 0 && errno != EEXIST) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Cannot create tmp directory %s: %s", matrixDir,
strerror(errno));
return -1;
}
do_output(LOG_CAT_INFO, LOG_AREA_MAIN,
"Using directory '%s' for matrix storage.",
matrixDir);
static bool initializedMatLib = false;
if(!initializedMatLib) {
mat::FileWritable::setPath(matrixDir);
mat::FileWritable::activate();
initializedMatLib = true;
}
}
if(scf.use_dft) {
if(dft_setfunc(mode) == 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in dft_setfunc");
return -1;
}
dftreport_();
}
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Calling grid_set_tmpdir with tmpdir = '%s'", tmpdir);
grid_set_tmpdir(tmpdir);
Dft::GridParams gss(var_get_realXC("radint"),
var_get_intXC("angmin"),
var_get_intXC("angint"),
var_get_realXC("box_size"),
var_get_intXC("force_cubic_boxes"),
var_get_realXC("hicu_max_error"),
var_get_realXC("hicu_box_size"),
var_get_realXC("hicu_start_box_size_debug"),
var_get_intXC("hicu_use_error_per_volume"),
var_get_intXC("hicu_do_double_checking"),
var_get_intXC("hicu_compare_to_refined"),
var_get_intXC("hicu_use_energy_criterion"),
var_get_intXC("hicu_use_energy_criterion_only"),
var_get_intXC("hicu_do_variation_checking"));
const char *gridType = var_get_stringXC("type");
if (strcasecmp(gridType, "HICU") == 0) {
gss.gridType = Dft::GridParams::TYPE_HICU;
} else if (strcasecmp(gridType, "GC2") == 0) {
gss.radialGridScheme = Dft::GridParams::GC2;
} else if (strcasecmp(gridType, "Turbo") == 0) {
gss.radialGridScheme = Dft::GridParams::TURBO;
} else if (strcasecmp(gridType, "LMG") == 0) {
gss.radialGridScheme = Dft::GridParams::LMG;
} else {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Unknown radial grid type '%s'", gridType);
return -1;
}
/* end of permutation initialization */
const char *initial_density_fname = var_get_string(NULL, "initial_density");
if(initial_density_fname && !*initial_density_fname)
initial_density_fname = NULL;
do_output(LOG_CAT_INFO, LOG_AREA_MAIN,
"Running %s%s", mode,
initial_density_fname ? " (restarted)" : "");
ergo_real threshold_integrals_1el = var_get_realJK("threshold_1el");
/* Set charges in extraChargesMolecule according to parameters "extra_charges_mol_charge_h", "extra_charges_mol_charge_o" etc. */
ergo_real extra_charges_atom_charge_h = var_get_real("extra_charges_atom_charge_h");
ergo_real extra_charges_atom_charge_o = var_get_real("extra_charges_atom_charge_o");
for(int i = 0; i < ergo.extraChargesMolecule.getNoOfAtoms(); i++) {
Atom atom = ergo.extraChargesMolecule.getAtom(i);
if(atom.charge == 1)
atom.charge = extra_charges_atom_charge_h;
else if(atom.charge == 8)
atom.charge = extra_charges_atom_charge_o;
else {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Error processing extraChargesMolecule: only O and H atoms are supported. Found atom with charge %5.2f", atom.charge);
return -1;
}
ergo.extraChargesMolecule.replaceAtom(i, atom);
}
int noOfElectrons = ergo.molecule.getNumberOfElectrons();
try {
if (noOfElectrons % 2 == 1 ||
scf.force_unrestricted ||
alpha_beta_diff != 0) {
// unrestricted SCF
SCF_unrestricted SCF(ergo.molecule,
ergo.extraChargesMolecule,
*Basis_info,
*ergoIntegralInfo,
initial_density_fname,
ergo.jkOptions,
gss,
scf,
ergo.matOptions,
threshold_integrals_1el,
alpha_beta_diff);
SCF.do_SCF_iterations();
// Optionally use results to perform CI calculation.
int do_ci_after_scf = var_get_int("do_ci_after_scf");
if(do_ci_after_scf == 1) {
// Do CI
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Preparing full matrices needed by CI routine..");
// Get stuff from SCF object.
symmMatrix S_matrix;
SCF.get_overlap_matrix(S_matrix);
symmMatrix H_core;
SCF.get_H_core_matrix(H_core);
symmMatrix FockMatrix_a;
symmMatrix FockMatrix_b;
SCF.get_Fock_matrices(FockMatrix_a, FockMatrix_b);
int noOfElectrons_a, noOfElectrons_b;
SCF.get_no_of_electrons(noOfElectrons_a, noOfElectrons_b);
ergo_real energy;
ergo_real nuclearEnergy;
SCF.get_energy(energy, nuclearEnergy);
// Create full matrices needed by CI routine.
int n = Basis_info->noOfBasisFuncs;
std::vector<ergo_real> S(n*n);
std::vector<ergo_real> F_a(n*n);
std::vector<ergo_real> F_b(n*n);
std::vector<ergo_real> H_1(n*n);
S_matrix.fullMatrix(S,
ergo.matOptions.inversePermutationHML,
ergo.matOptions.inversePermutationHML);
H_core.fullMatrix(H_1,
ergo.matOptions.inversePermutationHML,
ergo.matOptions.inversePermutationHML);
FockMatrix_a.fullMatrix(F_a,
ergo.matOptions.inversePermutationHML,
ergo.matOptions.inversePermutationHML);
FockMatrix_b.fullMatrix(F_b,
ergo.matOptions.inversePermutationHML,
ergo.matOptions.inversePermutationHML);
// Use default CI options
CI::Options ci_options;
// Call CI routine.
if(do_CI(*Basis_info,
*ergoIntegralInfo,
ci_options,
ergo.molecule,
&S[0],
&H_1[0],
&F_a[0],
&F_b[0],
noOfElectrons_a,
noOfElectrons_b,
nuclearEnergy,
energy
) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "Error in do_CI.");
throw "error in DO_CI";
}
do_output(LOG_CAT_RESULTS, LOG_AREA_SCF, "CI routine finished OK.");
}
}
else {
// restricted SCF
SCF_restricted SCF(ergo.molecule,
ergo.extraChargesMolecule,
*Basis_info,
*ergoIntegralInfo,
initial_density_fname,
ergo.jkOptions,
gss,
scf,
ergo.matOptions,
threshold_integrals_1el);
SCF.do_SCF_iterations();
// Optionally do electron dynamics calculation. */
int do_electron_dynamics_after_scf = var_get_int("do_electron_dynamics_after_scf");
if(do_electron_dynamics_after_scf == 1) {
// Get stuff from SCF object.
symmMatrix S_matrix;
SCF.get_overlap_matrix(S_matrix);
symmMatrix H_core;
SCF.get_H_core_matrix(H_core);
symmMatrix FockMatrix;
SCF.get_Fock_matrix(FockMatrix);
triangMatrix invCholFactor;
SCF.get_invCholFactor_matrix(invCholFactor);
symmMatrix densityMatrix;
SCF.get_density_matrix(densityMatrix);
JK::ExchWeights CAM_params;
get_hf_weight_and_cam_params(scf.use_dft, &CAM_params.alpha,
&CAM_params.beta, &CAM_params.mu);
CAM_params.computeRangeSeparatedExchange = CAM_params.beta != ergo_real(0.0);
do_tdhf_dynamics(*Basis_info,
*ergoIntegralInfo,
ergo.molecule,
ergo.extraChargesMolecule,
ergo.matOptions,
CAM_params,
ergo.jkOptions,
FockMatrix,
densityMatrix,
S_matrix,
invCholFactor,
ed);
}
}
}
catch (const std::bad_alloc & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"\n"
"=============================================================\n"
"std::bad_alloc caught in es_run: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
}
catch (const std::ios_base::failure & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"\n"
"=============================================================\n"
"std::ios_base::failure caught in es_run: '%s'\n"
"Out of disk space?", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
}
catch (const std::exception& e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Exception (std::exception) caught in es_run: '%s'\n", e.what());
fprintf(stderr, "Exception (std::exception) caught in es_run: '%s'\n", e.what());
} catch (const char* s) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Exception (char*) caught in es_run: '%s'\n", s);
fprintf(stderr, "Exception (char*) caught in es_run: '%s'\n", s);
}
grid_free_files();
if(var_get_intMA("write_to_file"))
es_rmdir_with_content(subdir.c_str());
return 0;
}
#if 0
static void
printmat(int n, const ergo_real *m, const char *name)
{
printf("Printing matrix %s\n", name);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++)
printf("%10.5f", m[i + j*n]);
puts("");
}
}
#endif
/** ErgoE2Evaluator implements the linear tranformation of the trial
vector/transition density matrix by the E[2] operator. The
transition density matrix is supplied in @param dmat. The result
is returned in @param fmat. */
class ErgoE2Evaluator : public LR::E2Evaluator {
BasisInfoStruct *bi;
Molecule *mol;
bool use_xc;
public:
ErgoE2Evaluator(BasisInfoStruct *bis, Molecule *m, const char *mode)
: bi(bis), mol(m) {
use_xc = mode && strcasecmp(mode, "HF") != 0;
}
virtual bool transform(const ergo_real *dmat, ergo_real *fmat) {
JK::ExchWeights CAM_params;
int nbast = bi->noOfBasisFuncs;
get_hf_weight_and_cam_params(use_xc,
&CAM_params.alpha,
&CAM_params.beta,
&CAM_params.mu);
CAM_params.computeRangeSeparatedExchange = CAM_params.beta != ergo_real(0.0);
//printmat(bi->noOfBasisFuncs, dmat, "transition density");
memset(fmat, 0, nbast*nbast*sizeof(ergo_real));
bool res = false;
#if 1
jkparams_set_from_vars(ergo.jkOptions);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "calling compute_J_by_boxes_nosymm");
if(compute_J_by_boxes_nosymm(*bi,
*ergoIntegralInfo,
ergo.jkOptions,
fmat,
dmat) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in compute_J_by_boxes_nosymm");
return false;
}
if(CAM_params.alpha != 0.0 || CAM_params.computeRangeSeparatedExchange)
{
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "ErgoE2Evaluator::transform(): calling compute_K_by_boxes");
int n = bi->noOfBasisFuncs;
ergo_real* K = new ergo_real[n*n];
memset(K, 0, n*n*sizeof(ergo_real));
int symmetryFlag = 0;
if(compute_K_by_boxes_dense(*bi,
*ergoIntegralInfo,
CAM_params,
ergo.jkOptions,
K,
dmat,
symmetryFlag) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in compute_K_by_boxes_dense.");
return false;
}
ergo_real CAMhf_weight =
CAM_params.computeRangeSeparatedExchange ? 1.0 : CAM_params.alpha;
for(int i = 0; i < n*n; i++)
fmat[i] += CAMhf_weight * K[i];
delete [] K;
}
res = true;
#else
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "ergo_scripted.cc: calling compute_2e_matrix_simple\n");
res =
compute_2e_matrix_simple(bi, ergoIntegralInfo, hf_weight,
fmat, dmat) == 0;
#endif
if(res && use_xc) {
ergo_real *dens_matrix = NULL;
BasisInfoStruct *basis_read = NULL;
Dft::GridParams gss(var_get_realXC("radint"),
var_get_intXC("angmin"),
var_get_intXC("angint"),
var_get_realXC("box_size"),
var_get_intXC("force_cubic_boxes"),
var_get_realXC("hicu_max_error"),
var_get_realXC("hicu_box_size"),
var_get_realXC("hicu_start_box_size_debug"),
var_get_intXC("hicu_use_error_per_volume"),
var_get_intXC("hicu_do_double_checking"),
var_get_intXC("hicu_compare_to_refined"),
var_get_intXC("hicu_use_energy_criterion"),
var_get_intXC("hicu_use_energy_criterion_only"),
var_get_intXC("hicu_do_variation_checking"));
if(ddf_load_density("density.bin", 1, *ergoIntegralInfo,
&basis_read, &dens_matrix)) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Cannot load last Fock matrix from potential.bin");
return false;
}
dft_lin_resp_mt(*basis_read, *mol, gss, dens_matrix, dmat, fmat);
ergo_free(dens_matrix);
delete basis_read;
}
return res;
}
};
class ErgoOperator : public LR::OneElOperator {
int px, py, pz;
public:
ErgoOperator(int pow_x, int pow_y, int pow_z)
: px(pow_x), py(pow_y), pz(pow_z){}
void setDipoleOp(int pow_x, int pow_y, int pow_z) {
px = pow_x; py = pow_y; pz = pow_z;
}
virtual void getOper(ergo_real *res) {
compute_operator_matrix_full(*Basis_info, *Basis_info, px, py, pz, res);
}
};
/** Computes the specified number of excited states. @param no_exc
specifies number of the excited states to be computed, @param mode
specifies the calculation type (HF, LDA, etc). */
int
es_getexc(const char *mode, int no_exc)
{
if (no_exc<=0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Number of excited states must be larger than 0\n");
return 1;
}
if(es_run(mode, 1) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "es_run failed");
return 2;
}
int nocc = ergo.molecule.getNumberOfElectrons();
if(nocc%2 != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"I work only for the closed shell.\n");
return 3;
}
nocc /= 2;
int nbast = Basis_info->noOfBasisFuncs;
/** FIXME: consider passing callback functions instead of entire
matrices. The callback functions fill in specified blocks of
data with overlap matrix and the Fock matrix. Current solution
keeps these two potentially huge data blocks allocated all the
time in memory. */
ergo_real *fock_matrix = NULL;
BasisInfoStruct *basis_read = NULL;
if(ddf_load_density("potential.bin", 1, *ergoIntegralInfo,
&basis_read, &fock_matrix)) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Cannot load last Fock matrix from potential.bin");
return -1;
}
//printmat(Basis_info->noOfBasisFuncs, fock_matrix, "FOCK");
ergo_real *overlap_matrix = new ergo_real[nbast*nbast];
if(compute_overlap_matrix(*Basis_info, *basis_read, overlap_matrix) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in compute_overlap_matrix");
ergo_free(fock_matrix);
return -2;
}
try {
const char *tmpdir = var_get_string(NULL, "tmpdir");
ErgoE2Evaluator e2(basis_read, &ergo.molecule, mode);
LR::EigenSolver solver(nbast, nocc, fock_matrix, overlap_matrix,
no_exc);
solver.convThreshold = var_get_realLR("convergence_threshold");
solver.increaseSubspaceLimit(var_get_intLR("max_iterations")*2);
if(!solver.solve(e2, tmpdir && *tmpdir ) ) {
printf("Not converged!\n");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Not converged\n");
}
ErgoOperator dx(1,0,0);
ErgoOperator dy(0,1,0);
ErgoOperator dz(0,0,1);
solver.computeMoments(dx, dy, dz);
for(int i=0; i<no_exc; i++) {
printf("Eigenvalue %2i: %15.9f Tran.Mom.: %15.9g\n", i+1,
(double)solver.getFreq(i), (double)sqrt((double)solver.getTransitionMoment2(i)));
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Eigenvalue %2i: %15.9f Tran.Mom.: %15.9g", i+1,
(double)solver.getFreq(i), (double)sqrt((double)solver.getTransitionMoment2(i)));
}
} catch(const char*s){
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Error encountered: %s\n", s);
}
ergo_free(fock_matrix);
grid_free_files();
delete []overlap_matrix;
delete basis_read;
return 0; /* success */
}
static const int*
getOperatorParams(int opname) {
static const int OpX[] = { 1, 0, 0 };
static const int OpY[] = { 0, 1, 0 };
static const int OpZ[] = { 0, 0, 1 };
switch( toupper(opname) ) {
case 'X': return OpX;
case 'Y': return OpY;
case 'Z': return OpZ;
default:
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"polarisability: known operators are X, Y and Z.");
return NULL;
}
}
static void
solveForRHS(LR::SetOfEqSolver& solver, ErgoE2Evaluator& e2, int opName,
const char *tmpdir, ergo_real freq)
{
const int *opL, *opR;
if(! (opR=getOperatorParams(opName)) )
throw "Unknown operator name";
ErgoOperator op(opR[0], opR[1], opR[2]);
solver.setRHS(op);
if(!solver.solve(e2, tmpdir && *tmpdir )) {
printf("LR not converged!\n");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "LR not converged\n");
}
char opLs[] = "XYZ";
for(int i = 0; opLs[i]; i++) {
opL = getOperatorParams(opLs[i]);
op.setDipoleOp(opL[0], opL[1], opL[2]);
ergo_real polarisability = -solver.getPolarisability(op);
printf("Response << %c | %c >> at freq %15.9f: %15.10g\n", opLs[i],
opName, (double)freq, (double)polarisability);
do_output(LOG_CAT_RESULTS, LOG_AREA_MAIN,
"Response << %c | %c >> at freq %15.9f: %15.10g", opLs[i],
opName, (double)freq, (double)polarisability);
}
}
/** Computes a dynamical polarizability for an operator specified by
the @param opName and frequency @param freq - please check what
does the literature say about computing multiple operators and/or
frequencies at the same time. Consider using enumerated constants
for operators instead of arbitrary strings to enforce parameter
checking. It can be too early in this place for that - the
operator names should be checked down the execution pipeline.
@param mode is the type of Hamiltonian (HF, or the xc functional).
@param freq tells the frequency.
*/
int
es_get_polarisability(const char *mode, const char *opName, double freq)
{
int nocc = ergo.molecule.getNumberOfElectrons();
if(nocc%2 != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"es_get_polarisability works only for a closed shell.\n");
return 3;
}
nocc /= 2;
if(opName && strlen(opName) != 1 && !getOperatorParams(opName[0]) ) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"polarisability: opname is a 1-character string eg. \"Z\".");
return 4;
}
if(es_run(mode, 1) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "es_run failed");
return 2;
}
do_output(LOG_CAT_INFO, LOG_AREA_MAIN,
"Polarisability calculation with FreQ: %g", freq);
int nbast = Basis_info->noOfBasisFuncs;
ergo_real *fockMatrix = NULL;
BasisInfoStruct *basis_read = NULL;
if(ddf_load_density("potential.bin", 1, *ergoIntegralInfo,
&basis_read, &fockMatrix)) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"Cannot load last Fock matrix from potential.bin");
return -1;
}
//printmat(Basis_info->noOfBasisFuncs, fock_matrix, "FOCK");
std::vector<ergo_real> overlapMatrix(nbast*nbast);
if(compute_overlap_matrix(*Basis_info, *basis_read, &overlapMatrix[0]) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "error in compute_overlap_matrix");
ergo_free(fockMatrix);
return -2;
}
try {
const char *tmpdir = var_get_string(NULL, "tmpdir");
ErgoE2Evaluator e2(basis_read, &ergo.molecule, mode);
LR::SetOfEqSolver solver(nbast, nocc, fockMatrix, &overlapMatrix[0],
freq);
overlapMatrix.clear();
delete fockMatrix; fockMatrix = NULL;
solver.convThreshold = var_get_realLR("convergence_threshold");
solver.increaseSubspaceLimit(var_get_intLR("max_iterations")*2);
if(opName) {
for(int i=0; opName[i]; i++)
solveForRHS(solver, e2, opName[i], tmpdir, freq);
} else {
for(const char *r="XYZ"; *r; r++)
solveForRHS(solver, e2, *r, tmpdir, freq);
}
} catch(const char*s) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN,
"SetOfEqSolver encountered error: %s\n", s);
}
if(fockMatrix) ergo_free(fockMatrix);
delete basis_read;
return 0; /* success */
}
/** initializes the input module by registering all the recognized
variables, their types and default values. If configuration
objects exist for some part of calculations, we make effort to
take the default values they provide. */
void
Ergo::registerInputVariables()
{
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
const char *tmpdir = getenv("TMPDIR");
if ( !(env && (defThreads=atoi(env)) > 0) ) {
defThreads = 1;
}
if( !tmpdir ) {
tmpdir = "/tmp";
}
int defThreadsOMP;
#ifdef _OPENMP
defThreadsOMP = defThreads;
#else
defThreadsOMP = 1;
#endif
#define KL ergo.J_K_params
#define KWJK(n,type,d) KW(ergo.J_K_params,n,type,jkOptions.n,(d))
KWJK(use_fmm, VAR_INT,"Use multipole method for Coulomb matrix construction. This also enables linear scaling HF-exchange matrix construction.");
#ifndef SKIP_UNOFFICIAL_INPUT_PARAMS
KWJK(use_differential_density, VAR_INT,"Use \"differential density\" procedure to try to speed up Fock matrix construction.");
#endif
KW(KL,threshold_2el_J, VAR_FLOAT,jkOptions.threshold_J,"Threshold value for Coulomb matrix construction.");
KW(KL,threshold_2el_K, VAR_FLOAT,jkOptions.threshold_K,"Threshold value for HF exchange matrix construction.");
KW(KL,threshold_1el, VAR_FLOAT, 1e-12,"Threshold value for one-electron (core) Hamiltonian matrix construction.");
KW(KL,threads_K, VAR_INT, defThreads,"Number of threads to use in Coulomb matrix construction.");
KW(KL,threads_J, VAR_INT, defThreads,"Number of threads to use in HF exchange matrix construction.");
KWJK(use_naive_fockmat_constr, VAR_INT,"Use naive implementation of Fock matrix construction.");
KWJK(multipole_threshold_factor, VAR_FLOAT,"Factor to apply to threshold value in multipole part (far field) of Coulomb matrix construction.");
KWJK(fmm_no_of_branches, VAR_INT,"Number of branches to use in Coulomb matrix construction. If 0, default branch settings are used based on box size and max extent.");
KWJK(fmm_branch_splitter_extent_5, VAR_FLOAT,"Extent splitter value 5 for branch division in Coulomb matrix construction.");
KWJK(fmm_branch_splitter_extent_4, VAR_FLOAT,"Extent splitter value 4 for branch division in Coulomb matrix construction.");
KWJK(fmm_branch_splitter_extent_3, VAR_FLOAT,"Extent splitter value 3 for branch division in Coulomb matrix construction.");
KWJK(fmm_branch_splitter_extent_2, VAR_FLOAT,"Extent splitter value 2 for branch division in Coulomb matrix construction.");
KWJK(fmm_branch_splitter_extent_1, VAR_FLOAT,"Extent splitter value 1 for branch division in Coulomb matrix construction.");
KWJK(fmm_box_size, VAR_FLOAT,"Smallest box size to use in Coulomb matrix construction.");
KWJK(exchange_box_size, VAR_FLOAT,"Smallest box size to use in HF exchange matrix construction.");
#undef KL
#define KL ergo.XC_params
KW(KL,type, VAR_STRING, "Turbo","Type of the radial quadrature, one of Turbo, LMG and HICU.");
KW(KL,sparse_mode, VAR_INT, 1,"Enable sparse mode for DFT exchange-correlation matrix computation.");
KW(KL,radint, VAR_FLOAT, 5e-9,"Accuracy of the radial integration for atomic grids");
KW(KL,force_cubic_boxes, VAR_INT, 0,"Forces cubic boxes in grid generation as opposed to rectangular cuboid");
KW(KL,box_size, VAR_FLOAT, 5.0,"Upper limit on grid box size");
KW(KL,angmin, VAR_INT, 6,"Minimal order of pruned angular atomic grids");
KW(KL,angint, VAR_INT, 29,"Default order of angular atomic grids");
KW(KL,hicu_max_error, VAR_FLOAT, 1e-7,"Threshold value (max error per box) for Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_box_size, VAR_FLOAT, 1.5,"Box size for Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_start_box_size_debug, VAR_FLOAT, 0.0,"Debug box size param for Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_use_error_per_volume, VAR_INT, 0,"Use \"error-per-volume\" measure in Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_do_double_checking, VAR_INT, 1,"Do \"double-checking\" of errors in Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_compare_to_refined, VAR_INT, 0,"Compare to refined grid in Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_use_energy_criterion, VAR_INT, 0,"Use energy criterion in Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_use_energy_criterion_only, VAR_INT, 0,"Use only energy criterion in Hierarchical Cubature (HiCu) DFT grid generation.");
KW(KL,hicu_do_variation_checking, VAR_INT, 0,"Do variation checking in Hierarchical Cubature (HiCu) DFT grid generation.");
#undef KL
#define KL ergo.output_params
#undef KL
#define KL ergo.mat_params
#define KWMAT(n,type,d) KW(ergo.mat_params,n,type,matOptions.n,d)
KW(KL,write_to_file, VAR_INT, 0,"Write unused matrices to disk to save memory.");
KWMAT(threshold_inch, VAR_FLOAT,"Threshold value for removal of small matrix elements within the inverse Cholesky (inch) computation.");
KW(KL,threads, VAR_INT, defThreadsOMP,"Number of threads to use in matrix library.");
KWMAT(sparse_threshold, VAR_FLOAT,"Threshold for sparse matrix truncation (removal of small matrix elements).");
KWMAT(sparse_matrix_block_factor_3, VAR_INT,"Block size factor determining block size at fourth lowest level.");
KWMAT(sparse_matrix_block_factor_2, VAR_INT,"Block size factor determining block size at third lowest level.");
KWMAT(sparse_matrix_block_factor_1, VAR_INT,"Block size factor determining block size at second lowest level: sparse_matrix_block_size * sparse_matrix_block_factor_1.");
KWMAT(sparse_matrix_block_size, VAR_INT,"Lowest level submatrix block size.");
KWMAT(use_allocator_manager, VAR_INT,"Use allocator manager (value 1) or new operator ( value 0) for memory managment.");
KWMAT(parallelLevel, VAR_INT,"Level in matrix hierarchy for parallelization.");
KWMAT(no_of_buffers_per_allocator, VAR_INT,"Number of buffers per allocator to use in matrix memory allocation manager. A large value means that large chunks of memory will be allocated at a time.");
#undef KWMAT
#undef KL
#define KL ergo.lr_params
KW(KL,max_iterations, VAR_INT, 10 ,"Maximum number of iterations for linear response calculations.");
KW(KL,convergence_threshold, VAR_FLOAT, 9e-4 ,"Convergence threshold for linear response calculations.");
#undef KL
#define KL ergo.ed_params
#define KWED(n,type,d) KW(ergo.ed_params,n,type,edOptions.n,d)
KW(ergo.ed_params,field_type, VAR_STRING, "none", "Field type to use in electron dynamics simulation: \"none\", \"dc-pulse\", \"ac-pulse\".");
KWED(max_time, VAR_FLOAT, "How long time to run electron dynamics. Unit: a.u.");
KWED(timestep, VAR_FLOAT, "Timestep to use in electron dynamics. Unit: a.u.");
KWED(dc_pulse_strength, VAR_FLOAT, "Strength of DC pulse to use in electron dynamics. Unit: a.u.");
KWED(dc_pulse_time, VAR_FLOAT, "Duration of DC pulse to use in electron dynamics. Unit: a.u.");
KWED(ac_pulse_max, VAR_FLOAT, "Maximum field strength E_max for AC pulse to use in electron dynamics. Unit: a.u.");
KWED(ac_pulse_omega, VAR_FLOAT, "Frequency omega for AC pulse to use in electron dynamics. Unit: a.u.");
#undef KWED
#undef KL
#define KL ergo.scf_params
#define KWSCF(n,type,d) KW(ergo.scf_params,n,type,scfOptions.n,d)
#ifndef SKIP_UNOFFICIAL_INPUT_PARAMS
KWSCF(do_f_thresh_verification, VAR_INT,"When truncating Fock matrix, verify that the error matrix norm is below the requested threshold.");
KWSCF(output_statistics_mfiles, VAR_INT,"Output m-file with statistics (timings etc) each SCF iteration.");
KWSCF(write_guess_density_only, VAR_INT,"Only generate starting guess density, write it to file and exit.");
KWSCF(compute_core_density, VAR_INT,"Each time the density matrix is computed, also compute a 'core density matrix' using only the core electrons.");
KWSCF(no_of_core_electrons, VAR_INT,"If compute_core_density is set, use this number of core electrons when coputing the 'core density matrix'.");
KWSCF(skip_H_core, VAR_INT,"Skip computation of 1-electron (core) Hamiltonian matrix. This gives bogus results, only useful if looking at results of initialization part or first cycle where H_core does not matter yet.");
KWSCF(do_acc_scan_J, VAR_INT,"Perform \"accuracy scan\" for Coulomb matrix.");
KWSCF(do_acc_scan_K, VAR_INT,"Perform \"accuracy scan\" for HF exchange matrix.");
KWSCF(do_acc_scan_Vxc, VAR_INT,"Perform \"accuracy scan\" for DFT exchange-correlation matrix.");
KWSCF(scan_no_of_steps, VAR_INT,"Number of steps to use in \"accuracy scans\" of J, K, Vxc matrices.");
KWSCF(scan_start_thresh, VAR_FLOAT,"Scan start threshold value to use for \"accuracy scans\" of J, K, Vxc matrices.");
KWSCF(scan_step_factor, VAR_FLOAT,"Step factor to use for \"accuracy scans\" of J, K, Vxc matrices.");
KWSCF(purification_create_m_files, VAR_INT,"Create m files with information about purification."),
KWSCF(purification_use_rand_perturbation_for_alleigsint, VAR_INT,"Use random perturbation to attempt getting easier Lanczos convergence when determining min/max eigenvalues of Fock matrix before purification.");
KW(ergo.scf_params, checkpoint_IDstr, VAR_STRING, "", "ID for file with saved state (parameters in the GetDensFromFock class) before recursive expansion on every SCF cycle.");
KWSCF(create_checkpoints, VAR_INT,"Save state (parameters in the GetDensFromFock class) before recursive expansion on every SCF cycle.");
KWSCF(purification_eigvalue_err_limit, VAR_FLOAT,"Requested accuracy in eigenvalues of the density matrix resulting from purification.");
KWSCF(use_new_stopping_criterion, VAR_INT,"Use new parameterless stopping criterion.");
KWSCF(try_eigv_on_next_iteration_if_fail, VAR_INT,"If fail to compute eigenvector in iteration i, try to compute it in iteration i+1.");
KWSCF(puri_compute_eigv_in_each_iteration, VAR_INT,"Compute eigenvectors in each iteration of the recursive expansion.");
KWSCF(run_shift_and_square_method_on_F, VAR_INT,"Run shift_and_square method to get eigenvectors of the matrix F for various shifts.");
KWSCF(save_permuted_F_matrix_in_bin, VAR_INT,"Save sparse matrix F into binary file in the current permutation of rows and columns.");
KWSCF(store_all_eigenvalues_to_file, VAR_INT,"Store eigenvalues of the Hamiltonian matrix when using diagonalization (use_diagonalization flag must be 1).");
#ifdef USE_CHUNKS_AND_TASKS
KWSCF(cht_leavesSizeMax, VAR_INT, "Size of the leave matrices in CHTMatrix");
KWSCF(cht_blocksize, VAR_INT, "Size of the block matrices in CHTMatrix if block sparse leave matrix is used");
#endif
KW(ergo.scf_params, eigenvectors_iterative_method, VAR_STRING, "lanczos", "Iterative method for computation of HOMO and LUMO molecular orbital coefficients. Value: power or lanczos");
#endif
KWSCF(use_simple_dense_H_core, VAR_INT,"Use simple dense matrix computation of 1-electron (core) Hamiltonian matrix.");
KWSCF(use_diis_always, VAR_INT,"Always use DIIS even if the energy goes up.");
KWSCF(write_overlap_matrix, VAR_INT,"Write overlap matrix to file.");
KWSCF(purification_ignore_failure, VAR_INT,"Ignore failure of the purification.");
KWSCF(use_diagonalization, VAR_INT,"Use diagonalization instead of purification.");
KWSCF(use_diag_on_error, VAR_INT,"Use diagonalization if purification fails.");
KWSCF(use_diag_on_error_guess, VAR_INT,"Use diagonalization if purification fails during starting guess projection.");
KWSCF(output_mulliken_pop, VAR_INT,"Output Mulliken population analysis stuff (atomic charges and atomic spin densities) after SCF finished.");
KWSCF(output_expected_values_pos_operator, VAR_INT,"Output expected value and standard deviation of position operator for eigenvectors after SCF finished (flag for eigenvectors must be set).");
KWSCF(output_density_images, VAR_INT,"Output density image files (including Gabedit gcube density files) after SCF finished.");
KWSCF(output_density_images_only, VAR_INT,"Output density image files (including Gabedit gcube density files) directly, without any SCF procedure, using the given starting guess density.");
KWSCF(output_density_images_boxwidth, VAR_FLOAT, "Box width to use for density image files (including Gabedit gcube density files).");
KWSCF(compute_gradient_fixeddens, VAR_INT,"Compute gradient of energy with respect to nuclear positions for fixed electron density (Hellmann-Feynman forces).");
KWSCF(verify_gradient_fixeddens, VAR_INT,"Verify gradient of energy with respect to nuclear positions (Hellmann-Feynman forces), using finite differences. Used only when compute_gradient_fixeddens is set.");
KWSCF(step_length_start, VAR_FLOAT,"Start value of SCF step length parameter.");
KWSCF(step_length_giveup, VAR_FLOAT,"When step length in SCF procedure becomes smaller than this value, give up.");
KWSCF(starting_guess_disturbance, VAR_FLOAT,"Magnitude of random disturbance to apply to starting guess density matrix.");
KWSCF(save_final_potential, VAR_INT,"Save final Fock/Kohn-Sham matrix to file after SCF finished.");
KWSCF(output_density_at_every_step, VAR_INT,"Write current density matrix to file in each iteration.");
KW(KL,no_of_threads_for_V, VAR_INT, defThreads,"Number of threads to use in V (1el electron-nuclear interaction) matrix construction.");
KWSCF(box_size_for_V_and_T, VAR_FLOAT, "Box size to use during construction of V and T matrices (parts of H_core matrix).");
KWSCF(no_of_impr_req_for_diis, VAR_INT,"Number of consecutive energy improvements required before attempting to use DIIS.");
KWSCF(min_number_of_iterations, VAR_INT,"Minimum number of SCF iterations.");
KWSCF(max_restart_count, VAR_INT,"Max number of times to attempt to restart SCF procedure when it appears stuck.");
KWSCF(max_number_of_iterations, VAR_INT,"Maximum number of SCF iterations.");
KWSCF(no_of_careful_first_scf_steps,VAR_INT,"Number of \"careful\" steps in beginning of SCF procedure. May be useful if starting guess is very bad.");
KWSCF(do_report_density_diff, VAR_INT,"In each SCF cycle, output norm of difference between current and previous density matrix.");
KWSCF(max_no_of_diis_matrices, VAR_INT,"Max number of DIIS matrices to use. Lower value may be useful to reduce disk/memory usage.");
KWSCF(force_unrestricted, VAR_INT,"Use unrestricted SCF even if numbers of alpha- and beta-electrons are equal.");
KWSCF(force_restricted, VAR_INT,"\"force_restricted\" parameter used for restricted open-shell calculations.");
KWSCF(error_maxabs_for_diis, VAR_FLOAT,"Do not use DIIS if error measure is larger than this value.");
KWSCF(purification_subspace_err_limit, VAR_FLOAT,"Requested accuracy in the occupied invariant subspace of the density matrix resulting from purification as measured by the sinus of the largest canonical angle between the exact and approximate subspaces.");
KWSCF(purification_with_acceleration, VAR_INT,"Use acceleration when doing purification.");
KWSCF(puri_eig_acc_factor_for_guess, VAR_FLOAT,"When doing purification of starting guess density, use the normal eigvalue_err_limit multiplied by this factor.");
KWSCF(gap_expected_lower_bound, VAR_FLOAT,"Expected lower bound of HOMO-LUMO gap, used in early SCF iterations when accurate gap info is not yet available.");
KWSCF(shift_using_prev_density_matrix, VAR_FLOAT, "As input to density matrix construction, Fock/KS matrix modified by subtracting previous density matrix times this factor. This is a way to artificially increase the HOMO-LUMO gap. A.k.a. level shifting.");
KWSCF(electronic_temperature, VAR_FLOAT,"Electronic temperature for Fermi-Dirac smearing in density matrix construction. Unit: a.u.");
KW(ergo.scf_params,purification_truncation_norm, VAR_STRING, "mixed","Matrix norm to be used for truncation of small matrix elements in purification, one of frob, mixed, and eucl.");
KW(ergo.scf_params,purification_stop_crit_norm, VAR_STRING, "mixed","Matrix norm to be used for the estimation of the convergence order in purification, one of frob, mixed, and eucl.");
KW(ergo.scf_params,electric_field_z,VAR_FLOAT, scfOptions.electric_field[2],"External electric field, z component.");
KW(ergo.scf_params,electric_field_y,VAR_FLOAT, scfOptions.electric_field[1],"External electric field, y component.");
KW(ergo.scf_params,electric_field_x,VAR_FLOAT, scfOptions.electric_field[0],"External electric field, x component.");
KWSCF(sparse_threshold_for_S, VAR_FLOAT,"Threshold value for truncation of overlap matrix S.");
KWSCF(sparse_threshold_for_Z, VAR_FLOAT,"Threshold value for truncation of inverse Cholesky factor Z.");
KWSCF(convergence_threshold, VAR_FLOAT,"Convergence threshold for SCF procedure; terminate SCF procedure when FDS-SDF error measure is below threshold.");
KWSCF(break_on_energy_increase, VAR_INT,"Break SCF procedure if energy increases.");
KWSCF(create_basis_func_coord_file, VAR_INT,"Write text file with coordinates of basis functions.");
KW(ergo.scf_params, go_back_X_iter_proj_method, VAR_INT, 10, "Parameter used in the projection method for computing eigenvectors. Defines the iteration to start computation of the eigenvectors.");
KW(ergo.scf_params, jump_over_X_iter_proj_method, VAR_INT, 3, "Parameter used in the projection method for computing eigenvectors. Defines how many iterations will be skipped before the next attempt if some eigenvectors are not computed.");
KW(ergo.scf_params, number_of_occupied_eigenvectors, VAR_INT, 1, "Number of occupied eigenvectors to compute. Use projection (purify-shift-and-project) method. Input parameter scf.output_homo_and_lumo_eigenvectors should be set to 1 and scf.eigenvectors_method should be set to \"projection\"");
KW(ergo.scf_params, number_of_unoccupied_eigenvectors, VAR_INT, 1, "Number of unoccupied eigenvectors to compute. Use projection (purify-shift-and-project) method. Input parameter scf.output_homo_and_lumo_eigenvectors should be set to 1 and scf.eigenvectors_method should be set to \"projection\" ");
KW(ergo.scf_params, eigenvectors_method, VAR_STRING, "square", "Method for computation of HOMO and LUMO molecular orbital coefficients. Possible values are square (for purify-shift-and-square) and projection (for purify-shift-and-project)");
KWSCF(use_prev_vector_as_initial_guess, VAR_INT,"Use eigenvector computed in previous SCF cycle as an initial guess for the next SCF cycle if possible.");
KWSCF(output_homo_and_lumo_eigenvectors, VAR_INT,"Output HOMO and LUMO molecular orbital coefficients.");
KWSCF(eigensolver_accuracy, VAR_FLOAT, "The accuracy for the eigenvalue problem solver.");
KWSCF(eigensolver_maxiter, VAR_INT, "The maximum number of iterations for the eigenvalue problem solver.");
KWSCF(purification_maxmul, VAR_INT, "The maximum number of iterations in the recursive expansion.");
KWSCF(create_mtx_file_S, VAR_INT,"Write overlap matrix to file in matrix market format (mtx).");
KWSCF(create_mtx_file_H_core, VAR_INT,"Write core Hamiltonian matrix to file in matrix market format (mtx).");
KWSCF(create_mtx_files_F, VAR_INT,"Write effective Hamiltonian matrices to file in matrix market format (mtx).");
KWSCF(create_mtx_files_D, VAR_INT,"Write density matrices to file in matrix market format (mtx).");
KWSCF(create_mtx_files_dipole, VAR_INT,"Write dipole matrices to file in matrix market format (mtx).");
KWSCF(create_mtx_files_S_and_quit, VAR_INT,"Write overlap matrix to file in matrix market format (mtx) using different basis function orderings, and then quit.");
KW(ergo.scf_params,calculation_identifier, VAR_STRING, "N/A","String to identify the calculation, used for example in mtx-files.");
KWSCF(create_2el_integral_m_file, VAR_INT,"Create m-file with rank-4 tensor containing the values of all 2-electron integrals. Very large; O(N^4); only use for small cases.");
#undef KWSCF
#undef KL
#define KL ergo.var_list
KW(KL,use_simple_starting_guess, VAR_INT, 1 ,"Use simple diagonal matrix starting guess.");
KW(KL,tmpdir, VAR_STRING, tmpdir,"Directory for temporary files, usually something like \"/scratch\" or \"/tmp\".");
KW(KL,spin_polarization, VAR_INT, 0,"Spin polarization: difference between number of alpha- and beta-spin electrons; 0 for closed shell case.");
KW(KL,output_basis, VAR_INT, 0 ,"Write information about basis set to output file.");
KW(KL,initial_density, VAR_STRING, "","Filename of binary file from which starting guess density should be read.");
KW(KL,ghost_basis, VAR_STRING, "" ,"Basis set to use for \"ghost molecule\".");
KW(KL,enable_memory_usage_output, VAR_INT, 0,"Write information about memory usage to output file.");
KW(KL,do_ci_after_scf, VAR_INT, 0,"Perform a CI (configuration interaction) calculation after the SCF calculation.");
KW(KL,do_electron_dynamics_after_scf, VAR_INT, 0,"Perform electron dynamics (e.g. TDHF) calculation after the SCF calculation.");
KW(KL,use_6_d_functions, VAR_INT, 0,"If set to 1, use 6 basis functions in d-type shells instead of the usual 5 functions.");
KW(KL,rand_seed, VAR_INT, 0,"Random seed initializing sequence of random numbers.");
KW(KL,charge, VAR_INT, 0,"Net charge of molecule; this number (together with the nuclei) determines the number of electrons in the system.");
KW(KL,extra_charges_atom_charge_o, VAR_FLOAT, -0.82, "Charge assigned to oxygen atoms in 'extra charges' molecule. The value -0.82 corresponds to the SPC model charge.");
KW(KL,extra_charges_atom_charge_h, VAR_FLOAT, 0.41, "Charge assigned to hydrogen atoms in 'extra charges' molecule. The value 0.41 corresponds to the SPC model charge.");
KW(KL,basis, VAR_STRING, "" ,"Basis set file name.");
KW(KL,scf, VAR_LIST, ergo.scf_params,"List of input variables related to SCF procedure.");
// ELIAS NOTE 2011-02-22: the "output" variable list is now empty,
// and then it causes seg fault if included, so I commented it out.
//KW(KL,output, VAR_LIST, ergo.output_params,"List of input variables related to output.");
KW(KL,mat, VAR_LIST, ergo.mat_params,"List of input variables related to hierarchic matrix library.");
KW(KL,lr, VAR_LIST, ergo.lr_params,"List of input variables related to linear response calculations.");
KW(KL,ed, VAR_LIST, ergo.ed_params,"List of input variables related to electron dynamics calculations.");
KW(KL,XC, VAR_LIST, ergo.XC_params,"List of input variables related to the computation of the DFT exchange-correlation contribution.");
KW(KL,J_K, VAR_LIST, ergo.J_K_params,"List of input variables related to the computation of Coulomb and HF exchange matrices.");
#undef KL
}
static void
benchmark_mm()
{
static const int SZ = 2000;
static const double ALPHA=1.0, BETA=0.0;
struct tms t1, t2;
times(&t1);
std::vector<double> a(SZ*SZ);
std::vector<double> b(SZ*SZ);
std::vector<double> c(SZ*SZ);
for(int i=SZ*SZ-1; i>=0; i--) { a[i] = 2-i; b[i] = i;}
mat::gemm("N","N", &SZ, &SZ, &SZ, &ALPHA, &a[0], &SZ,
&b[0], &SZ, &BETA, &c[0], &SZ);
times(&t2);
printf("MM time: %6.3f s\nReference values:\nPhenom 2.4GHz/GOTO: 1.9s\n"
"Phenom 2.4GHz/generic: 23.6s\n",
double(t2.tms_utime-t1.tms_utime)/sysconf(_SC_CLK_TCK));
}
extern "C" int yyparse(void);
extern "C" void* yy_scan_string(const char *str);
extern "C" void* yy_create_buffer(FILE *f, int sz);
extern "C" void yy_switch_to_buffer(void *);
extern "C" void yy_delete_buffer(void *);
extern "C" void yylex_destroy(void);
extern FILE *yyin; /**< file used by the lex-generated parser.*/
static void
ergo_parse_file(FILE *inputFile)
{
void *buffer = yy_create_buffer(inputFile, 256);
yy_switch_to_buffer(buffer);
ergo_scanner_reading_stdin = isatty(fileno(inputFile));
yyparse();
yy_delete_buffer(buffer);
}
static void
ergo_parse_string(const char *str)
{
void *buffer = yy_scan_string(str);
yy_switch_to_buffer(buffer);
yyparse();
yy_delete_buffer(buffer);
}
void
es_warranty(void)
{
puts(ERGO_LICENSE_TEXT_LONG "\n\n");
}
struct filename_or_string_struct {
std::string filename;
std::string str;
};
int
main(int argc, char *argv[])
{
int numThreads_CHT = 1, numWorkers_CHT = 1;
size_t cache_size = 0;
try {
enable_output();
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, ERGO_LICENSE_TEXT_LONG);
FILE *inp_file = NULL;
ergo.registerInputVariables();
es_set_nthreads_string("detect");
dft_init();
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "ERGO version %s\n", VERSION);
// Below we go through the input arguments and create a list of filename_or_string_struct that we will process later.
std::list<filename_or_string_struct> filename_or_string_list;
for(int i = 1; i < argc; i++) {
if(strcmp(argv[i], "-w") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "parsing string: %s\n", argv[i+1]);
numWorkers_CHT = atoi(argv[i+1]);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "(ChT) number of workers: %s\n", argv[i+1]);
printf("(ChT) number of workers: %s\n", argv[i+1]);
} else {
fprintf(stderr, "option -w encountered without argument\n");
return 1;
}
i++;
}
else if(strcmp(argv[i], "-t") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "parsing string: %s\n", argv[i+1]);
numThreads_CHT = atoi(argv[i+1]);
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "(ChT) number of threads: %s\n", argv[i+1]);
printf("(ChT) number of threads: %s\n", argv[i+1]);
} else {
fprintf(stderr, "option -t encountered without argument\n");
return 1;
}
i++;
}
else if(strcmp(argv[i], "-cs") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "parsing string: %s\n", argv[i+1]);
std::istringstream iss(argv[i+1]);
iss >> cache_size;
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "(ChT) cache size: %s\n", argv[i+1]);
printf("(ChT) cache size: %s\n", argv[i+1]);
} else {
fprintf(stderr, "option -cs encountered without argument\n");
return 1;
}
i++;
}
else if(strcmp(argv[i], "-e") == 0) {
if(i+1<argc) {
// Input line found; add it to list to process later.
filename_or_string_struct tmp;
tmp.str = argv[i+1];
filename_or_string_list.push_back(tmp);
} else {
fprintf(stderr, "option -e encountered without argument\n");
return 1;
}
i++;
} else if(strcmp(argv[i], "-m") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Reading molecule file: %s\n", argv[i+1]);
if(es_mol_read_molecule(argv[i+1], MOL_MAIN) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "es_mol_read_molecule() failed.");
return 1;
}
} else {
fprintf(stderr, "option -m encountered without argument\n");
return 1;
}
i++;
} else if(strcmp(argv[i], "-c") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Reading extra charges from file: %s\n", argv[i+1]);
if(readMoleculeFileInXyzFormat(ergo.extraChargesMolecule,
argv[i+1],
0, /* This param has no meaning in this case. */
false) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "readMoleculeFileInXyzFormat() for extra charges failed.");
return 1;
}
} else {
fprintf(stderr, "option -c encountered without argument\n");
return 1;
}
i++;
} else if(strcmp(argv[i], "-g") == 0) {
if(i+1<argc) {
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Reading ghost molecule from file: %s\n", argv[i+1]);
if(readMoleculeFileInXyzFormat(ergo.ghostMolecule,
argv[i+1],
0, /* This param has no meaning in this case. */
false) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "readMoleculeFileInXyzFormat() for ghost molecule failed.");
return 1;
}
} else {
fprintf(stderr, "option -g encountered without argument\n");
return 1;
}
i++;
}
#ifdef USE_CHUNKS_AND_TASKS
else if(strcmp(argv[i], "-h") == 0) {
printf("Usage: ergo [args...]\n"
"args can be: input file name\n"
" -w number of workers (default 1)\n"
" -t number of threads (default 1)\n"
" -cs cache size in MB (default 0)\n"
" -e \"input line\"\n"
" -d VARIABLE_NAME variable to describe\n"
" -m molecule file name\n"
" -c extra-charges molecule file name\n"
" -h this message\n"
"Arguments are interpreted in the order of encounter.\n"
"Predefined variables:\n");
es_print_help();
return 0;
}
#else
else if(strcmp(argv[i], "-h") == 0) {
printf("Usage: ergo [args...]\n"
"args can be: input file name\n"
" -e \"input line\"\n"
" -d VARIABLE_NAME variable to describe\n"
" -m molecule file name\n"
" -c extra-charges molecule file name\n"
" -h this message\n"
"Arguments are interpreted in the order of encounter.\n"
"Predefined variables:\n");
es_print_help();
return 0;
}
#endif
else if(strcmp(argv[i], "-d") == 0) {
if(i+1<argc) {
const struct variable *v = es_find_var(NULL, argv[i+1]);
if (v) {
es_print_help_var(v);
return 0;
} else {
fprintf(stderr, "Variable %s not found.\n", argv[i+1]);
return 1;
}
} else {
fprintf(stderr, "option -d encountered without argument\n");
return 1;
}
} else if(strcmp(argv[i], "-b") == 0) {
benchmark_mm();
} else {
// Input file name found; add it to list to process later.
filename_or_string_struct tmp;
tmp.filename = argv[i];
filename_or_string_list.push_back(tmp);
}
}
// OK, now we have gone through all input arguments and any input
// lines and/or input filenames have been placed in the list
// filename_or_string_list.
#ifdef USE_CHUNKS_AND_TASKS
cht::extras::setNWorkers(numWorkers_CHT);
cht::extras::setNoOfWorkerThreads(numThreads_CHT);
cht::setOutputLevel(cht::Output::Info);
cht::setOutputMode(cht::Output::AllInTheEnd);
cht::extras::Cache::Mode cache_mode = cht::extras::Cache::Enabled;
size_t cacheMemoryUsageLimit = cache_size; // MB
cht::extras::setCacheMode(cache_mode);
cht::extras::setCacheSize(cacheMemoryUsageLimit);
cht::start();
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Use Chunks and Tasks parallel library");
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Set number of workers to %d and number of threads to %d", numWorkers_CHT, numThreads_CHT);
#else
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "Not using CHT, so values numWorkers_CHT=%d and numThreads_CHT=%d will be ignored.", numWorkers_CHT, numThreads_CHT);
#endif
// Now process any input lines and/or input filenames.
bool executed_something = false;
std::list<filename_or_string_struct>::iterator it = filename_or_string_list.begin();
while(it != filename_or_string_list.end()) {
if(it->str.length() != 0) {
// Process input line
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "parsing string: %s\n", it->str.c_str());
ergo_parse_string(it->str.c_str());
executed_something = true;
}
else {
assert(it->filename.length() != 0);
// Process input file
inp_file = fopen(it->filename.c_str(), "rt");
if (!inp_file) {
fprintf(stderr, "Could not open '%s' for reading input.\n", it->filename.c_str());
return 1;
}
do_output(LOG_CAT_INFO, LOG_AREA_MAIN, "reading input from file %s\n", it->filename.c_str());
ergo_parse_file(inp_file);
fclose(inp_file);
executed_something = true;
}
it++;
}
if(!executed_something) {
if(isatty(fileno(stdin))) {
printf(ERGO_LICENSE_TEXT_BRIEF "\n\n");
printf("ERGO is ready!\n> ");
}
ergo_parse_file(stdin);
}
#ifdef USE_CHUNKS_AND_TASKS
cht::stop();
#endif
if(ergoIntegralInfo)
delete ergoIntegralInfo;
if(Basis_info)
delete Basis_info;
}
catch (mat::AcceptableMaxIter & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "mat::AcceptableMaxIter caught in ergo main: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
catch (mat::Failure & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "mat::Failure caught in ergo main: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
catch (char const * e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "char* exception caught in ergo main: '%s'", e);
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
catch (std::bad_alloc & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "std::bad_alloc caught in ergo main: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
catch (std::ios_base::failure & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "std::ios_base::failure caught in ergo main: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "Out of disk space?");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
catch (std::exception & e) {
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "std::exception caught in ergo main: '%s'", e.what());
do_output_time(LOG_CAT_ERROR, LOG_AREA_MAIN, "Time of exception: ");
do_output(LOG_CAT_ERROR, LOG_AREA_MAIN, "=============================================================");
}
// Call yylex_destroy() here to avoid memory leaks due to buffers that may remain after e.g. previous yy_switch_to_buffer() calls.
yylex_destroy();
return 0;
}
/* ===================================================================
Replacement routines for some of the ERGO code.
*/
|