1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file basis_func_extent_1el.cc
@brief Code for determining extent of basis functions, for
1-electron integral evaluation.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "basis_func_extent_1el.h"
#include "output.h"
#include "pi.h"
#include "exponent_list.h"
int
compute_extent_for_all_basis_funcs_1el(const BasisInfoStruct & basisInfo,
ergo_real* basisFuncExtentList,
ergo_real maxCharge,
ergo_real threshold)
{
// Create discretized list of exponents with maxAbsCoeff for each unique exponent.
ExponentList exponentList;
if(exponentList.get_list_of_available_exponents(basisInfo) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_list_of_available_exponents");
return -1;
}
int n = basisInfo.noOfBasisFuncs;
for(int i = 0; i < n; i++)
{
BasisFuncStruct* basisFunc = &basisInfo.basisFuncList[i];
ergo_real largestExtentSoFar = 0;
// go through all primitives for this basis function.
int nPrims = basisFunc->noOfSimplePrimitives;
int start = basisFunc->simplePrimitiveIndex;
for(int j = 0; j < nPrims; j++)
{
DistributionSpecStruct* prim = &basisInfo.simplePrimitiveList[start + j];
ergo_real currExponent = prim->exponent;
ergo_real currAbsCoeff = template_blas_fabs(prim->coeff);
ergo_real a = currExponent;
ergo_real c_a = currAbsCoeff;
// now go through all available exponents
for(int ii = 0; ii < exponentList.noOfExponents; ii++)
{
ergo_real b = exponentList.list[ii].exponent;
ergo_real c_b = exponentList.list[ii].maxAbsCoeff;
if(c_b > 0)
{
// This extent definition was derived from the estimate of the largest possible contribution to V given by (2 * pi * coeff / exponent).
ergo_real R2 = -1 * ((a+b)/(a*b)) * template_blas_log(threshold*(a+b)/(2*pi*c_a*c_b*maxCharge));
if(R2 < 0)
continue;
ergo_real R = template_blas_sqrt(R2);
if(R > largestExtentSoFar)
largestExtentSoFar = R;
}
} // END FOR ii
} // END FOR j
if( largestExtentSoFar <= 0 )
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_extent_for_all_basis_funcs_1el: (largestExtentSoFar <= 0)");
return -1;
}
basisFuncExtentList[i] = largestExtentSoFar;
} // END FOR i
return 0;
}
|