1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file basis_func_pair_list.cc
@brief Functions for setting up lists of non-negligible basis
function pairs, for 2-electron integrals.
@author: Elias Rudberg <em>responsible</em>
*/
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include "basis_func_pair_list.h"
#include "basis_func_extent.h"
#include "output.h"
#include "integrals_general.h"
#include "pi.h"
#include "integrals_2el_single.h"
#include "memorymanag.h"
#include "integrals_2el_repeating.h"
#include "utilities.h"
#include "box_system.h"
static int
get_maxLimitingFactor(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
const ergo_real* basisFuncExtentList,
ergo_real* result_maxLimitingFactor,
const BoxSystem & boxSystem,
const box_item_struct* itemList)
{
IntegratorWithMemory integrator(&integralInfo);
int n = basisInfo.noOfBasisFuncs;
ergo_real maxExtent = 0;
for(int i = 0; i < n; i++) {
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
std::vector<int> orgIndexList(n);
ergo_real maxLimitingFactor = 0;
for(int i = 0; i < n; i++) {
// Now, instead of looping again over all n basis functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = basisInfo.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(itemList, coords, maxDistance, &orgIndexList[0]);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++) {
int j = orgIndexList[jRelevant];
if(j < i)
continue;
// Now we are concerned with basis functions i and j.
// If they are far enough apart, we can skip this pair.
ergo_real dx = basisInfo.basisFuncList[i].centerCoords[0] - basisInfo.basisFuncList[j].centerCoords[0];
ergo_real dy = basisInfo.basisFuncList[i].centerCoords[1] - basisInfo.basisFuncList[j].centerCoords[1];
ergo_real dz = basisInfo.basisFuncList[i].centerCoords[2] - basisInfo.basisFuncList[j].centerCoords[2];
ergo_real distance = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
if(distance > basisFuncExtentList[i] + basisFuncExtentList[j])
continue;
// There may be some overlap between these two basis functions.
// Compute product explicitly.
const int maxCountProduct = POLY_PRODUCT_MAX_DISTRS;
DistributionSpecStruct psi_list[maxCountProduct];
/* form product of basisfuncs i and j, store product in psi_list */
int n_psi = get_product_simple_primitives(basisInfo, i,
basisInfo, j,
psi_list,
maxCountProduct,
0);
if(n_psi < 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives");
return -1;
}
for(int k = 0; k < n_psi; k++) {
ergo_real limitingFactor = template_blas_sqrt(integrator.do_2e_integral(&psi_list[k]));
if(limitingFactor > maxLimitingFactor)
maxLimitingFactor = limitingFactor;
} // END FOR k
} // END FOR j
} // END FOR i
*result_maxLimitingFactor = maxLimitingFactor;
return 0;
}
int
get_basis_func_pair_list_2el(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real threshold,
ergo_real maxDensityMatrixElement,
std::vector<basis_func_index_pair_struct> & resultList)
{
IntegratorWithMemory integrator(&integralInfo);
int n = basisInfo.noOfBasisFuncs;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "get_basis_func_pair_list, n = %6i", n);
Util::TimeMeter timeMeter;
// compute extent for all basis functions
std::vector<ergo_real> basisFuncExtentList(n);
if(compute_extent_for_all_basis_funcs_2el(integralInfo,
basisInfo,
&basisFuncExtentList[0],
threshold,
maxDensityMatrixElement) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_extent_for_all_basis_funcs_2el");
return -1;
}
ergo_real maxExtent = 0;
for(int i = 0; i < n; i++) {
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
// Create box system for basisInfo.
std::vector<box_item_struct> itemList(n);
for(int i = 0; i < n; i++) {
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = basisInfo.basisFuncList[i].centerCoords[j];
itemList[i].originalIndex = i;
}
ergo_real toplevelBoxSize = 7.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(&itemList[0],
n,
toplevelBoxSize) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in create_box_system.");
return -1;
}
ergo_real maxLimitingFactor = 0;
if(get_maxLimitingFactor(basisInfo,
integralInfo,
&basisFuncExtentList[0],
&maxLimitingFactor,
boxSystem,
&itemList[0]) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_maxLimitingFactor");
return -1;
}
std::vector<int> orgIndexList(n);
unsigned int count = 0;
for(int i = 0; i < n; i++)
{
// Now, instead of looping again over all n basis functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = basisInfo.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(&itemList[0], coords, maxDistance, &orgIndexList[0]);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++) {
int j = orgIndexList[jRelevant];
if(j < i)
continue;
// Now we are concerned with basis functions i and j.
// If they are far enough apart, we can skip this pair.
ergo_real dx = basisInfo.basisFuncList[i].centerCoords[0] - basisInfo.basisFuncList[j].centerCoords[0];
ergo_real dy = basisInfo.basisFuncList[i].centerCoords[1] - basisInfo.basisFuncList[j].centerCoords[1];
ergo_real dz = basisInfo.basisFuncList[i].centerCoords[2] - basisInfo.basisFuncList[j].centerCoords[2];
ergo_real distance = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
if(distance > basisFuncExtentList[i] + basisFuncExtentList[j])
continue;
// There may be some overlap between these two basis functions.
// However, the extent check is rather rough.
// To check more carefully, compute product explicitly.
int currProductLargeEnough = 0;
const int maxCountProduct = POLY_PRODUCT_MAX_DISTRS;
DistributionSpecStruct psi_list[maxCountProduct];
/* form product of basisfuncs i and j, store product in psi_list */
int n_psi = get_product_simple_primitives(basisInfo, i,
basisInfo, j,
psi_list,
maxCountProduct,
0);
if(n_psi < 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives");
return -1;
}
for(int k = 0; k < n_psi; k++) {
ergo_real limitingFactor = template_blas_sqrt(integrator.do_2e_integral(&psi_list[k]));
if(limitingFactor*maxLimitingFactor*maxDensityMatrixElement > threshold) {
// This product distr is large enough.
currProductLargeEnough = 1;
break;
} // END IF above threshold
} // END FOR k
if(currProductLargeEnough == 1) {
// Include this pair in the list
// First expand list if needed.
if(count >= resultList.size()) {
int newSize = (count+1000) * 1.1;
resultList.resize(newSize);
}
resultList[count].index_1 = i;
resultList[count].index_2 = j;
count++;
} // END IF include this pair in the list
} // END FOR jRelevant
} // END FOR i
timeMeter.print(LOG_AREA_INTEGRALS, "get_basis_func_pair_list_2el");
return count;
}
|