1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integral_info.cc
@brief Defines IntegralInfo object, providing the coefficients
needed for integral evaluation.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdlib.h>
#include <cmath>
#include <stdio.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include <stdexcept>
#include "integral_info.h"
#include "boysfunction.h"
#include "output.h"
#include "memorymanag.h"
#include "mat_gblas.h"
#define NBIN 28
static int BinCoeffs[NBIN*NBIN];
static void
setup_bin_coeffs()
{
for(int i = 0; i < NBIN; i++) {
BinCoeffs[i*NBIN+0] = 1;
BinCoeffs[i*NBIN+i] = 1;
for(int j = 1; j < i; j++) {
BinCoeffs[i*NBIN+j] =
BinCoeffs[(i-1)*NBIN+j-1]
+ BinCoeffs[(i-1)*NBIN+j];
}
}
}
static int getBinCoeff(int i, int j) {
if(i >= NBIN || j >= NBIN)
throw "Error in integral_info getBinCoeff: (i >= NBIN || j >= NBIN).";
return BinCoeffs[i*NBIN+j];
}
/* Earlier, the factorial() routine here had return type int, but that
gave problems with integer overflow. */
static ergo_real
factorial(int n) {
if(n == 0)
return 1;
return n * factorial(n-1);
}
static int
get_real_solid_harmonic_poly(int l, int m,
basis_func_poly_struct* result) {
setup_bin_coeffs();
ergo_real denominator;
if(m == 0)
denominator = 2;
else
denominator = 1;
ergo_real NSlm = ((ergo_real)1 / (template_blas_pow((ergo_real)2, (ergo_real)abs(m))*factorial(l)))
* template_blas_sqrt(2*factorial(l+abs(m))*factorial(l-abs(m)) / denominator);
const int MAX_DEGREE = 10;
ergo_real terms[MAX_DEGREE][MAX_DEGREE][MAX_DEGREE];
memset(terms, 0, sizeof(terms));
for(int t = 0; t <= (l-abs(m))/2; t++)
for(int u = 0; u <= t; u++) {
ergo_real vm;
int n; // n is the number of terms in the innermost sum
if(m >= 0) {
// m >= 0 ==> vm = 0
vm = 0;
n = abs(m) / 2 + 1;
}
else
{
// m < 0 ==> vm = 0.5
vm = 0.5;
n = (abs(m) - 1) / 2 + 1;
}
for(int v_index = 0; v_index < n; v_index++) {
ergo_real v = v_index + vm;
int twov = (int)(2 * v);
int ix = (int)(2*t + abs(m) - 2 * (u + v));
int iy = (int)(2*(u+v));
int iz = (int)(l - 2*t - abs(m));
if(ix+iy+iz != l) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in get_real_solid_harmonic_poly: ix iy iz = %i %i %i", ix, iy, iz);
return -1;
}
if(ix >= MAX_DEGREE || iy >= MAX_DEGREE || iz >= MAX_DEGREE) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in get_real_solid_harmonic_poly: "
"(ix >= MAX_DEGREE || iy >= MAX_DEGREE || iz >= MAX_DEGREE), ix iy iz = %i %i %i", ix, iy, iz);
return -1;
}
if(ix < 0 || iy < 0 || iz < 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error: (ix < 0 || iy < 0 || iz < 0)");
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "ix iy iz = %i %i %i", ix, iy, iz);
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "t = %i, m = %i, u = %i, v = %f", t, m, u, (double)v);
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "n = %i, v_index = %i", n, v_index);
return -1;
}
int power_t_plus_v_minus_vm = (int)(t + v - vm);
ergo_real Clmtuv =
template_blas_pow((ergo_real)-1, (ergo_real)power_t_plus_v_minus_vm) *
template_blas_pow((ergo_real)0.25, (ergo_real)t) *
getBinCoeff(l, t) * getBinCoeff(l-t, abs(m)+t) * getBinCoeff(t, u) * getBinCoeff(abs(m), twov);
terms[ix][iy][iz] += NSlm * Clmtuv;
} // END FOR v_index
} // END FOR t u
int termCount = 0;
for(int ix = 0; ix < MAX_DEGREE; ix++)
for(int iy = 0; iy < MAX_DEGREE; iy++)
for(int iz = 0; iz < MAX_DEGREE; iz++) {
if(terms[ix][iy][iz] != 0) {
result->termList[termCount].monomialInts[0] = ix;
result->termList[termCount].monomialInts[1] = iy;
result->termList[termCount].monomialInts[2] = iz;
result->termList[termCount].coeff = terms[ix][iy][iz];
termCount++;
if(termCount >= MAX_NO_OF_TERMS_IN_BASIS_FUNC_POLY) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in get_real_solid_harmonic_poly: (termCount >= MAX_NO_OF_TERMS_IN_BASIS_FUNC_POLY)");
return -1;
}
}
} // END FOR ix iy iz
result->noOfTerms = termCount;
return 0;
}
int
setup_basis_func_polys(IntegralInfo* b)
{
basis_func_poly_struct* curr = NULL;
int count = 0;
const int MAX_L_QUANTUM_NUMBER = BASIS_FUNC_POLY_MAX_DEGREE;
ergo_real scaleFactorList[MAX_L_QUANTUM_NUMBER+1];
scaleFactorList[0] = 1;
scaleFactorList[1] = 1;
scaleFactorList[2] = template_blas_sqrt(3.0);
scaleFactorList[3] = template_blas_sqrt(15.0);
// Set all other factors to same value. FIXME: find out if/how/why this matters.
for(int ii = 4; ii <= MAX_L_QUANTUM_NUMBER; ii++)
scaleFactorList[ii] = template_blas_sqrt(15.0);
for(int l = 0; l <= MAX_L_QUANTUM_NUMBER; l++) {
for(int m = -l; m <= l; m++) {
curr = &b->basis_func_poly_list[count];
if(get_real_solid_harmonic_poly(l, m, curr) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_real_solid_harmonic_poly");
return -1;
}
// Now curr contains the Solid Harmonic polynamial as given in table 6.3 in the book by Helgaker at al.
// compute scaledSolidHarmonicPrefactor
if(m == 0)
curr->scaledSolidHarmonicPrefactor = 1;
else
curr->scaledSolidHarmonicPrefactor = template_blas_pow((ergo_real)-1, (ergo_real)m) / template_blas_sqrt((ergo_real)2);
// use scalefactor
for(int i = 0; i < curr->noOfTerms; i++)
curr->termList[i].coeff /= scaleFactorList[l];
// update curr->scaledSolidHarmonicPrefactor to compensate for that each term has been divided by scaleFactor
curr->scaledSolidHarmonicPrefactor *= scaleFactorList[l];
count++;
if(count >= MAX_NO_OF_BASIS_FUNC_POLYS) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS,
"error in setup_basis_func_polys: (count >= MAX_NO_OF_BASIS_FUNC_POLYS)");
return -1;
}
} // END FOR m
} // END FOR l
/* set monomialID for each term */
for(int j = 0; j < count; j++) {
curr = &b->basis_func_poly_list[j];
for(int i = 0; i < curr->noOfTerms; i++) {
basis_func_term_struct* currTerm = &curr->termList[i];
int i0 = currTerm->monomialInts[0];
int i1 = currTerm->monomialInts[1];
int i2 = currTerm->monomialInts[2];
currTerm->monomialID = b->monomial_info.monomial_index_list[i0][i1][i2];
}
}
b->no_of_basis_func_polys = count;
return 0;
}
ergo_real IntegralInfo::BoysFunction(int n, ergo_real x) const {
if(!initialized)
throw std::runtime_error("Error in IntegralInfo::BoysFunction: not initialized.");
return boysFunctionManager.BoysFunction(n, x);
}
ergo_real IntegralInfo::BoysFunction_expensive(int n, ergo_real x, int noOfIntegrationIntervals) const {
return boysFunctionManager.BoysFunction_expensive(n, x, noOfIntegrationIntervals);
}
int IntegralInfo::multiply_by_hermite_conversion_matrix_from_right(int n1max,
int n2max,
ergo_real a,
ergo_real* A,
ergo_real* result) const {
return hermite_conversion_info.multiply_by_hermite_conversion_matrix_from_right(monomial_info, n1max, n2max, a, A, result);
}
int IntegralInfo::multiply_by_hermite_conversion_matrix_from_left(int n1max,
int n2max,
ergo_real a,
ergo_real* A,
ergo_real* result) const {
return hermite_conversion_info.multiply_by_hermite_conversion_matrix_from_left(monomial_info, n1max, n2max, a, A, result);
}
int IntegralInfo::get_hermite_conversion_matrix_right(int nmax,
ergo_real a,
ergo_real* result) const {
return hermite_conversion_info.get_hermite_conversion_matrix_right(monomial_info, nmax, a, result);
}
int IntegralInfo::get_hermite_conversion_matrix_left(int nmax,
ergo_real a,
ergo_real* result) const {
return hermite_conversion_info.get_hermite_conversion_matrix_left(monomial_info, nmax, a, result);
}
int IntegralInfo::get_hermite_conversion_matrix_right_sparse(int nmax,
ergo_real a,
i_j_val_struct* result) const {
return hermite_conversion_info.get_hermite_conversion_matrix_right_sparse(monomial_info, nmax, a, result);
}
void IntegralInfo::init() {
if(initialized)
return;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling boysFunctionManager.init().");
boysFunctionManager.init();
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling multipolePrep.init().");
multipolePrep.init();
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling mmLimitTable.init().");
mmLimitTable.inittt(multipolePrep);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling monomial_info.init().");
monomial_info.init();
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling hermite_conversion_info.init().");
hermite_conversion_info.init(monomial_info);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "IntegralInfo::init() calling setup_basis_func_polys");
if(setup_basis_func_polys(this) != 0)
throw std::runtime_error("Error in IntegralInfo::init(), in setup_basis_func_polys()..");
initialized = true;
}
IntegralInfo::IntegralInfo(bool initialize) : initialized(false)
{
if(initialize)
init();
}
IntegralInfo::~IntegralInfo()
{
/* Nothing is dynamically allocated, nothing needs to be released. */
}
/** Function needed for Chunks&Tasks usage. */
IntegralInfo::IntegralInfo(const IntegralInfo & ii)
: boysFunctionManager(ii.boysFunctionManager),
multipolePrep(ii.multipolePrep),
mmLimitTable(ii.mmLimitTable),
hermite_conversion_info(ii.hermite_conversion_info),
initialized(ii.initialized),
no_of_basis_func_polys(ii.no_of_basis_func_polys),
monomial_info(ii.monomial_info)
{
memcpy(basis_func_poly_list, ii.basis_func_poly_list, sizeof(basis_func_poly_list));
}
/** Function needed for Chunks&Tasks usage. */
void IntegralInfo::write_to_buffer ( char * dataBuffer, size_t const bufferSize ) const {
if(!initialized)
throw std::runtime_error("Error: IntegralInfo::write_to_buffer called when not initialized.");
char* p = dataBuffer;
if(bufferSize < get_size())
throw std::runtime_error("Error in IntegralInfo::write_to_buffer: bufferSize too small.");
// boysFunctionManager
boysFunctionManager.write_to_buffer(p, bufferSize - (p - dataBuffer));
p += boysFunctionManager.get_size();
// multipolePrep
multipolePrep.write_to_buffer(p, bufferSize - (p - dataBuffer));
p += multipolePrep.get_size();
// mmLimitTable
mmLimitTable.write_to_buffer(p, bufferSize - (p - dataBuffer));
p += mmLimitTable.get_size();
// hermite_conversion_info
hermite_conversion_info.write_to_buffer(p, bufferSize - (p - dataBuffer));
p += hermite_conversion_info.get_size();
// initialized
memcpy(p, &initialized, sizeof(bool));
p += sizeof(bool);
// basis_func_poly_list
memcpy(p, basis_func_poly_list, MAX_NO_OF_BASIS_FUNC_POLYS*sizeof(basis_func_poly_struct));
p += MAX_NO_OF_BASIS_FUNC_POLYS*sizeof(basis_func_poly_struct);
// no_of_basis_func_polys
memcpy(p, &no_of_basis_func_polys, sizeof(int));
p += sizeof(int);
// monomial_info
monomial_info.write_to_buffer(p, bufferSize - (p - dataBuffer));
p += monomial_info.get_size();
// DONE!
}
/** Function needed for Chunks&Tasks usage. */
size_t IntegralInfo::get_size() const {
return boysFunctionManager.get_size()
+ multipolePrep.get_size()
+ mmLimitTable.get_size()
+ hermite_conversion_info.get_size()
+ sizeof(bool)
+ MAX_NO_OF_BASIS_FUNC_POLYS*sizeof(basis_func_poly_struct)
+ sizeof(int)
+ monomial_info.get_size();
}
/** Function needed for Chunks&Tasks usage. */
void IntegralInfo::assign_from_buffer ( char const * dataBuffer, size_t const bufferSize) {
const char* p = dataBuffer;
// boysFunctionManager
boysFunctionManager.assign_from_buffer(p, bufferSize - (p - dataBuffer));
p += boysFunctionManager.get_size();
// multipolePrep
multipolePrep.assign_from_buffer(p, bufferSize - (p - dataBuffer));
p += multipolePrep.get_size();
// mmLimitTable
mmLimitTable.assign_from_buffer(p, bufferSize - (p - dataBuffer));
p += mmLimitTable.get_size();
// hermite_conversion_info
hermite_conversion_info.assign_from_buffer(p, bufferSize - (p - dataBuffer));
p += hermite_conversion_info.get_size();
// initialized
memcpy(&initialized, p, sizeof(bool));
p += sizeof(bool);
// basis_func_poly_list
memcpy(basis_func_poly_list, p, MAX_NO_OF_BASIS_FUNC_POLYS*sizeof(basis_func_poly_struct));
p += MAX_NO_OF_BASIS_FUNC_POLYS*sizeof(basis_func_poly_struct);
// no_of_basis_func_polys
memcpy(&no_of_basis_func_polys, p, sizeof(int));
p += sizeof(int);
// monomial_info
monomial_info.assign_from_buffer(p, bufferSize - (p - dataBuffer));
p += monomial_info.get_size();
// DONE!
if(static_cast<size_t>(p-dataBuffer) > bufferSize)
throw std::runtime_error("Error: (p > bufferSize).");
}
|