File: integrals_1el_kinetic.cc

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (339 lines) | stat: -rw-r--r-- 11,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file integrals_1el_kinetic.cc

    @brief Code for 1-electron integrals, computation of
    kinetic-energy matrix T.

    @author: Elias Rudberg <em>responsible</em>
*/

/* Written by Elias Rudberg, KTH, Stockholm */
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>

#include "integrals_1el_kinetic.h"
#include "memorymanag.h"
#include "pi.h"
#include "output.h"
#include "utilities.h"
#include "boysfunction.h"
#include "integral_info.h"
#include "integrals_general.h"
#include "box_system.h"
#include "multipole.h"
#include "integrals_2el_single.h"
#include "integrals_1el_single.h"
#include "basis_func_pair_list_1el.h"


/* FIXME do not use this hard-coded value! */
static const ergo_real MATRIX_ELEMENT_THRESHOLD_VALUE = 1e-12;



static void
do_derivative_of_simple_prim(const DistributionSpecStruct& prim,
			     DistributionSpecStruct* resultList,
			     int coord)
{
  /* first term */
  if(prim.monomialInts[coord] > 0)
    {
      memcpy(&resultList[0], &prim, sizeof(DistributionSpecStruct));
      resultList[0].coeff *= prim.monomialInts[coord];
      resultList[0].monomialInts[coord] -= 1;
    }
  else
    {
      /* first term is zero */
      resultList[0].coeff = 0;
    }
  /* second term */
  memcpy(&resultList[1], &prim, sizeof(DistributionSpecStruct));
  resultList[1].coeff *= -2*prim.exponent;
  resultList[1].monomialInts[coord] += 1;
}

/** Computes the contribution to kinetic energy integral along the
   cartesian coordinate coord between two distributions prim1 and
   prim2. Note that this function is *not* strict wrt the
   effectiveThreshold parameter, the approximation is only
   proportional to its value but it can exceed it. */
ergo_real 
simplePrimTintegral(const DistributionSpecStruct& prim1,
		    const DistributionSpecStruct& prim2,
		    int coord,
		    ergo_real threshold)
{
  const int maxDistrsInTempList = 888;
  DistributionSpecStruct tempList[maxDistrsInTempList];
  int i, k, nNewPrims;
  ergo_real sum;
  DistributionSpecStruct list1[2];
  DistributionSpecStruct list2[4];
  do_derivative_of_simple_prim(prim2, list1, coord);
  if(list1[0].coeff != 0)
    {
      do_derivative_of_simple_prim(list1[0], &list2[0], coord);
    }
  else
    {
      list2[0].coeff = 0;
      list2[1].coeff = 0;
    }
  if(list1[1].coeff != 0)
    {
      do_derivative_of_simple_prim(list1[1], &list2[2], coord);
    }
  else
    {
      list2[2].coeff = 0;
      list2[3].coeff = 0;
    }
  /* now the resulting 4 terms are stored in list2 */

  sum = 0;
  for(i = 0; i < 4; i++)
    {
      if(list2[i].coeff == 0)
	continue;

      nNewPrims = get_product_simple_prims(prim1, 
					   list2[i], 
					   tempList,
					   maxDistrsInTempList,
					   threshold);
      if(nNewPrims < 0)
	{
	  do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_prims");
	  return -1;
	}

      for(k = 0; k < nNewPrims; k++)
	{
	  const DistributionSpecStruct & currDistr = tempList[k];
	  sum += compute_integral_of_simple_prim(currDistr);
	} /* END FOR k */
    }
  
  return sum;
}


int
compute_T_matrix_sparse_linear(const BasisInfoStruct& basisInfo,
			       ergo_real threshold,
			       ergo_real boxSize,
			       int* nvaluesList,
			       int** colindList,
			       ergo_real** valuesList)
{
  int internal_error = 0;
  int n = basisInfo.noOfBasisFuncs;

  int noOfBasisFuncIndexPairs = get_basis_func_pair_list_simple(basisInfo, threshold, boxSize, NULL, 2000000000);
  if(noOfBasisFuncIndexPairs <= 0) {
    do_output(LOG_CAT_ERROR, LOG_AREA_UNDEFINED, "error in get_basis_func_pair_list_simple, noOfBasisFuncIndexPairs = %i", noOfBasisFuncIndexPairs);
    return -1;
  }
  std::vector<basis_func_index_pair_struct_1el> basisFuncIndexPairList(noOfBasisFuncIndexPairs);
  noOfBasisFuncIndexPairs = get_basis_func_pair_list_simple(basisInfo, threshold, boxSize, &basisFuncIndexPairList[0], noOfBasisFuncIndexPairs);
  if(noOfBasisFuncIndexPairs <= 0) {
    do_output(LOG_CAT_ERROR, LOG_AREA_UNDEFINED, "error in get_basis_func_pair_list_simple, noOfBasisFuncIndexPairs = %i", noOfBasisFuncIndexPairs);
    return -1;
  }
  do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "compute_T_matrix_sparse_linear: n = %d, threshold = %g, boxSize = %f",
	    n, (double)threshold, (double)boxSize);
  do_output(LOG_CAT_INFO, LOG_AREA_UNDEFINED, "compute_T_matrix_sparse_linear: noOfBasisFuncIndexPairs = %i ==> storing %6.2f %% of a full matrix", 
	    noOfBasisFuncIndexPairs, (double)100*noOfBasisFuncIndexPairs/((double)n*n));

  // To reduce scaling we want some kind of "extent" for each basis function.
  // Start by getting largest simple integral for each of the two basis sets.
  ergo_real A = get_largest_simple_integral(basisInfo);
  std::vector<ergo_real> basisFuncExtentList(n);
  get_basis_func_extent_list(basisInfo, &basisFuncExtentList[0], MATRIX_ELEMENT_THRESHOLD_VALUE / A);

  std::vector<int> offsetVec(n);
  std::vector<int> countVec(n);
  int currOffset = 0;
  int countSumToVerify = 0;
  for(int i = 0; i < n; i++) {
    int savedOffset = currOffset;
    while(currOffset < noOfBasisFuncIndexPairs && basisFuncIndexPairList[currOffset].index_1 == i)
      currOffset++;
    int count = currOffset - savedOffset;
    offsetVec[i] = savedOffset;
    countVec[i] = count;
    countSumToVerify += count;
  }
  assert(currOffset == noOfBasisFuncIndexPairs);
  assert(countSumToVerify == noOfBasisFuncIndexPairs);
  
#ifdef _OPENMP
#pragma omp parallel
#endif
  {
    // Allocate vector for results for one row.
    std::vector<ergo_real> rowValueList(n);
    std::vector<int> row_nu_list(n);
#ifdef _OPENMP
#pragma omp for schedule(guided)
#endif
    for(int mu = 0; mu < n; mu++) {
      int no_of_nu_values = countVec[mu];
      int startOffset = offsetVec[mu];
      int count = 0;
      BasisFuncStruct* basisFunc_mu = &basisInfo.basisFuncList[mu];
      int n_mu = basisFunc_mu->noOfSimplePrimitives;
      int start_prim_mu = basisFunc_mu->simplePrimitiveIndex;
      DistributionSpecStruct* list_mu = &basisInfo.simplePrimitiveList[start_prim_mu];
      for(int nuCounter = 0; nuCounter < no_of_nu_values; nuCounter++) {
	int nu = basisFuncIndexPairList[startOffset+nuCounter].index_2;
	assert(mu == basisFuncIndexPairList[startOffset+nuCounter].index_1);
	assert(nu <= mu);
	// Compute distance between basis function centers
	ergo_real dx = basisInfo.basisFuncList[mu].centerCoords[0] - basisInfo.basisFuncList[nu].centerCoords[0];
	ergo_real dy = basisInfo.basisFuncList[mu].centerCoords[1] - basisInfo.basisFuncList[nu].centerCoords[1];
	ergo_real dz = basisInfo.basisFuncList[mu].centerCoords[2] - basisInfo.basisFuncList[nu].centerCoords[2];
	ergo_real distance = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
	// We can skip if distance is greater than sum of extents.
	if(distance > basisFuncExtentList[mu] + basisFuncExtentList[nu])
	  continue;
	BasisFuncStruct* basisFunc_nu = &basisInfo.basisFuncList[nu];
	int n_nu = basisFunc_nu->noOfSimplePrimitives;
	int start_prim_nu = basisFunc_nu->simplePrimitiveIndex;
	DistributionSpecStruct* list_nu = &basisInfo.simplePrimitiveList[start_prim_nu];
	/* compute matrix element [mu,nu] */
	ergo_real sum = 0;
	int i, j, k;
	for(j = 0; j < n_mu; j++) {
	  const DistributionSpecStruct& prim_mu_j = list_mu[j];
	  for(k = 0; k < n_nu; k++) {
	    const DistributionSpecStruct& prim_nu_k = list_nu[k];
	    ergo_real effectiveThreshold = 2.0*threshold/(n_mu*n_nu*3);
	    /* now loop over coordinates */
	    for(i = 0; i < 3; i++) {
	      /* Note that this function is not strict wrt the
		 effectiveThreshold parameter, the
		 approximation is only proportional to its
		 value but it can exceed it. */
	      sum += simplePrimTintegral(prim_mu_j,
					 prim_nu_k,
					 i,
					 effectiveThreshold);
	    } /* END FOR i */
	  } /* END FOR k */
	} /* END FOR j */
	rowValueList[count] = -0.5 * sum;
	row_nu_list[count] = nu;
	if(template_blas_fabs(rowValueList[count]) > MATRIX_ELEMENT_THRESHOLD_VALUE)
	  count++;
      } /* END FOR nuCounter */
      // OK, this row done.
      // Now go through results to check which elements need to be saved.
      nvaluesList[mu] = count;
      // Now allocate result vectors for this row.
      colindList[mu] = ergo_new(count, int);
      valuesList[mu] = ergo_new(count, ergo_real);
      for(int j = 0; j < count; j++) {
	colindList[mu][j] = row_nu_list[j];
	valuesList[mu][j] = rowValueList[j];
      }
    } /* END FOR mu */
  }

  return internal_error ? -1 : 0;
}



int
compute_T_matrix_full(const BasisInfoStruct& basisInfo,
		      ergo_real threshold,
		      ergo_real* result)
{
  int n = basisInfo.noOfBasisFuncs;
  int* nvaluesList = ergo_new(n, int);
  int** colindList = ergo_new(n, int*);
  ergo_real** valuesList = ergo_new(n, ergo_real*);

  ergo_real boxSize = 6.3;
  if(compute_T_matrix_sparse_linear(basisInfo,
				    threshold,
				    boxSize,
				    nvaluesList,
				    colindList,
				    valuesList) != 0)
    {
      do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_T_matrix_sparse");
      return -1;
    }
  
  // Now populate full result matrix
  memset(result, 0, n*n*sizeof(ergo_real));
  int i;
  for(i = 0; i < n; i++)
    {
      int count = nvaluesList[i];
      int* colind = colindList[i];
      ergo_real* values = valuesList[i];
      int j;
      for(j = 0; j < count; j++)
	{
	  int row = i;
	  int col = colind[j];
	  ergo_real value = values[j];
	  result[row*n+col] = value;
	  result[col*n+row] = value;
	}
    } // END FOR i
  
  // Remember to free memory allocated inside compute_T_matrix_sparse.
  for(i = 0; i < n; i++)
    {
      ergo_free(colindList[i]);
      ergo_free(valuesList[i]);
    }

  ergo_free(nvaluesList);
  ergo_free(colindList);
  ergo_free(valuesList);

  return 0;
}